当前位置: X-MOL 学术J. CO2 Util. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomistic simulations of syngas oxy-combustion in supercritical CO2
Journal of CO2 Utilization ( IF 7.2 ) Pub Date : 2021-04-30 , DOI: 10.1016/j.jcou.2021.101554
E. Grajales-González , M. Monge-Palacios , S. Mani Sarathy

The growing energy demand worldwide is currently supplied by the direct use of fossil fuels, which are limited in nature and represent an environmental concern. Syngas/oxy-combustion technologies have become popular due to recent advances in carbon capture and storage and the possibility to avoid NOX formation by replacing N2 with supercritical CO2. However, the successful implementation of these systems faces several drawbacks: variability in syngas composition and lack of understanding of the chemical kinetics at elevated temperature and pressures in the presence of CO2. In this work, we carried out a molecular dynamics study of syngas oxy-combustion using ReaxFF force field. Three main initiation reactions were identified: H2 + O2 → HO2 + H, H2 → H + H, and CO2 → CO + O, with the last being dominant at high temperatures and high concentrations of CO2. We also found that increasing the initial CO2 concentration and decreasing that of O2 delays ignition. However, for enriched CO2 mixtures, this substrate exerts a catalytic effect in the reactions H2 → H + H and H2O → OH + H by forming the intermediate HCO2. In the absence of initial CO2, formyl radical (HCO) chemistry is lacking due to the prominent consumption of H species by molecular oxygen via O2 + H → OH + O and H + O2 (+M) → HO2 (+M). However, we observed the association between HCO and OH radicals to form stable formic acid, a reaction not implemented in syngas mechanisms.



中文翻译:

超临界CO 2中合成气氧燃烧的原子模拟

目前,全球范围内不断增长的能源需求是通过直接使用化石燃料来满足的,而化石燃料的性质有限并且代表着对环境的关注。合成气/氧气燃烧技术由于碳捕获和储存的最新进展以及通过用超临界CO 2代替N 2避免形成NO X的可能性而变得流行。然而,这些系统的成功实施面临几个缺点:合成气组成的可变性以及缺乏对在存在CO 2的情况下在升高的温度和压力下的化学动力学的理解。在这项工作中,我们使用ReaxFF力场进行了合成气氧燃烧的分子动力学研究。确定了三个主要的引发反应:H2 + O 2 →HO 2 + H,H 2 →H + H和CO 2 →CO + O,最后一种在高温和高浓度CO 2中占主导地位。我们还发现增加初始CO 2浓度和降低O 2浓度会延迟点火。但是,对于富集的CO 2混合物,该底物通过形成中间体HCO 2在反应H 2 →H + H和H 2 O→OH + H中发挥催化作用。在没有初始CO 2的情况下,由于分子氧通过O 2 + H→OH + O和H + O 2(+ M)→HO 2(+ M)显着消耗H物种,因此缺乏甲酰基自由基(HCO)化学。但是,我们观察到HCO和OH自由基之间的缔合形成稳定的甲酸,该反应未在合成气机理中实施。

更新日期:2021-05-02
down
wechat
bug