当前位置: X-MOL 学术Adv. Differ. Equ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Global bifurcation and constant sign solutions of discrete boundary value problem involving p -Laplacian
Advances in Difference Equations ( IF 3.1 ) Pub Date : 2021-05-01 , DOI: 10.1186/s13662-021-03309-9
Fumei Ye

We study the unilateral global bifurcation result for the one-dimensional discrete p-Laplacian problem

$$ \textstyle\begin{cases} -\Delta [\varphi _{p}(\Delta u(t-1))]=\lambda a(t)\varphi _{p}(u(t))+g(t,u(t), \lambda ),\quad t\in [1,T+1]_{Z}, \\ \Delta u(0)=u(T+2)=0, \end{cases} $$

where \(\Delta u(t)=u(t+1)-u(t)\) is a forward difference operator, \(\varphi _{p}(s)=|s|^{p-2}s\) (\(1< p<+\infty \)) is a one-dimensional p-Laplacian operator. λ is a positive real parameter, \(a: [1,T+1]_{Z}\to [0,+\infty )\) and \(a(t_{0})>0\) for some \(t_{0}\in [1,T+1]_{Z}\), \(g :[1,T+1]_{Z}\times \mathbb{R}^{2}\to \mathbb{R}\) satisfies the Carathéodory condition in the first two variables. We show that \((\lambda _{1},0)\) is a bifurcation point of the above problem, and there are two distinct unbounded continua \(\mathscr{C}^{+}\) and \(\mathscr{C}^{-}\), consisting of the bifurcation branch \(\mathscr{C}\) from \((\lambda _{1},0)\), where \(\lambda _{1}\) is the principal eigenvalue of the eigenvalue problem corresponding to the above problem. Let \(T>1\) be an integer, Z denote the integer set for \(m, n\in Z\) with \(m< n\), \([m, n]_{Z}:=\{m, m+1,\ldots , n\}\).

As the applications of the above result, we prove more details about the existence of constant sign solutions for the following problem:

$$ \textstyle\begin{cases} -\Delta [\varphi _{p}(\Delta u(t-1))]=\lambda a(t)f(u(t)),\quad t\in [1,T+1]_{Z}, \\ \Delta u(0)=u(T+2)=0, \end{cases} $$

where \(f\in C(\mathbb{R},\mathbb{R})\) with \(sf(s)>0\) for \(s\neq 0\).



中文翻译:

含p -Laplacian的离散边值问题的整体分歧和常数符号解

我们研究一维离散p -Laplacian问题的单边全局分叉结果

$$ \ textstyle \ begin {cases}-\ Delta [\ varphi _ {p}(\ Delta u(t-1))] = \ lambda a(t)\ varphi _ {p}(u(t))+ g(t,u(t),\ lambda),\ quad t \ in [1,T + 1] _ {Z},\\ \ Delta u(0)= u(T + 2)= 0,\ end {cases} $$

其中\(\ Delta u(t)= u(t + 1)-u(t)\)是前向差分算子,\(\ varphi _ {p}(s)= | s | ^ {p-2} s \)\(1 <p <+ \ infty \))是一维p -Laplacian算子。λ是一个正实参数,\(a:[1,T + 1] _ {Z} \至[0,+ \ infty)\)\(a(t_ {0})> 0 \)对于某些\ ([1,T + 1] _ {Z} \中的(t_ {0} \)\(g:[1,T + 1] _ {Z} \次\ mathbb {R} ^ {2} \到\ mathbb {R} \)满足前两个变量中的Carathéodory条件。我们证明\((\ lambda _ {1},0)\)是上述问题的分叉点,并且有两个不同的无界连续数\(\ mathscr {C} ^ {+} \)\(\ mathscr {C} ^ {-} \),由\((\ lambda _ {1},0)\)的分支分支\(\ mathscr {C} \)组成,其中\(\ lambda _ {1} \)是对应于上述问题的特征值问题的主要特征值。让\(T> 1 \)是整数,ž表示为整数集合(沿Z \ M,N \)\\(M <N \) \([M,N] _ {Z}:= \ {m,m + 1,\ ldots,n \} \)

作为上述结果的应用,我们为以下问题证明了有关常数符号解的存在的更多详细信息:

$$ \ textstyle \ begin {cases}-\ Delta [\ varphi _ {p}(\ Delta u(t-1))] = \ lambda a(t)f(u(t)),\ quad t \ in [1,T + 1] _ {Z},\\ \ Delta u(0)= u(T + 2)= 0,\ end {cases} $$

其中\(f \ in C(\ mathbb {R},\ mathbb {R})\)中带有\(sf(s)> 0 \)\(s \ neq 0 \)

更新日期:2021-05-02
down
wechat
bug