当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Convolutional neural nets in chemical engineering: Foundations, computations, and applications
AIChE Journal ( IF 3.5 ) Pub Date : 2021-05-01 , DOI: 10.1002/aic.17282
Shengli Jiang 1 , Victor M. Zavala 1
Affiliation  

In this article, we review the mathematical foundations of convolutional neural nets (CNNs) with the goals of: (i) highlighting connections with techniques from statistics, signal processing, linear algebra, differential equations, and optimization, (ii) demystifying underlying computations, and (iii) identifying new types of applications. CNNs are powerful machine learning models that highlight features from grid data to make predictions (regression and classification). The grid data object can be represented as vectors (in 1D), matrices (in 2D), or tensors (in 3D or higher dimensions) and can incorporate multiple channels (thus providing high flexibility in the input data representation). CNNs highlight features from the grid data by performing convolution operations with different types of operators. The operators highlight different types of features (e.g., patterns, gradients, geometrical features) and are learned by using optimization techniques. In other words, CNNs seek to identify optimal operators that best map the input data to the output data. A common misconception is that CNNs are only capable of processing image or video data but their application scope is much wider; specifically, datasets encountered in diverse applications can be expressed as grid data. Here, we show how to apply CNNs to new types of applications such as optimal control, flow cytometry, multivariate process monitoring, and molecular simulations.

中文翻译:

化学工程中的卷积神经网络:基础、计算和应用

在本文中,我们回顾了卷积神经网络 (CNN) 的数学基础,其目标是:(i) 强调与统计、信号处理、线性代数、微分方程和优化技术的联系,(ii) 揭开底层计算的神秘面纱, (iii) 识别新的应用类型。CNN 是强大的机器学习模型,可突出网格数据中的特征以进行预测(回归和分类)。网格数据对象可以表示为向量(在 1D 中)、矩阵(在 2D 中)或张量(在 3D 或更高维度中),并且可以合并多个通道(从而在输入数据表示中提供高度灵活性)。CNN 通过使用不同类型的算子执行卷积操作来突出网格数据中的特征。运算符突出显示不同类型的特征(例如,图案、梯度、几何特征)并通过使用优化技术来学习。换句话说,CNNs 寻求识别最佳算子,将输入数据最好地映射到输出数据。一个常见的误解是,CNN 只能处理图像或视频数据,但其应用范围要广泛得多;具体来说,在不同应用中遇到的数据集可以表示为网格数据。在这里,我们展示了如何将 CNN 应用于新型应用,例如优化控制、流式细胞术、多变量过程监控和分子模拟。一个常见的误解是,CNN 只能处理图像或视频数据,但其应用范围要广泛得多;具体来说,在不同应用中遇到的数据集可以表示为网格数据。在这里,我们展示了如何将 CNN 应用于新型应用,例如优化控制、流式细胞术、多变量过程监控和分子模拟。一个常见的误解是,CNN 只能处理图像或视频数据,但其应用范围要广泛得多;具体来说,在不同应用中遇到的数据集可以表示为网格数据。在这里,我们展示了如何将 CNN 应用于新型应用,例如优化控制、流式细胞术、多变量过程监控和分子模拟。
更新日期:2021-05-01
down
wechat
bug