当前位置: X-MOL 学术Prog. Theor. Exp. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nambu dynamics and hydrodynamics of granular material
Progress of Theoretical and Experimental Physics Pub Date : 2021-04-22 , DOI: 10.1093/ptep/ptab052
Akio Sugamoto 1 , Kazuharu Bamba 2 , Tetuya Kawamura 3 , Anna Kuwana 4 , Yusaku Nagata 5 , Mayumi Saitou 1
Affiliation  

On the basis of the intimate relation between Nambu dynamics and hydrodynamics, hydrodynamics on a non-commutative space (obtained by the quantization of space), proposed by Nambu in his last work, is formulated as hydrodynamics of granular material. In Sect. 2, the quantization of space is done using a Moyal product, and the hydrodynamic simulation is performed for the thus-obtained 2D fluid, which flows inside a channel with an obstacle. The obtained results differ between two cases in which the size of a fluid particle is zero and finite. The difference seems to come from the behavior of vortices generated by an obstacle. In Sect. 3, considering a vortex as a string, two models are examined; one is the hybrid model in which vortices interact with each other by exchanging Kalb–Ramond fields (a generalization of stream functions), and the other is the more general string field theory in which the Kalb–Ramond field is one of the excitation modes of string oscillations. In the string field theory, an Altarelli–Parisi-type evolution equation is introduced. This is expected to describe the response of the distribution function of a vortex inside turbulence, when the energy scale is changed. The behavior of viscosity differs in string theory compared with particle theory, so that the Landau theory of fluids to introduce viscosity may be modified. In conclusion, hydrodynamics and string theory are almost identical theories. It should be noted, however, that the string theory needed to reproduce a given hydrodynamics is not the usual string theory.

中文翻译:

颗粒材料的南部动力学和流体动力学

基于 Nambu 动力学与流体动力学之间的密切关系,Nambu 在其最后的工作中提出的非交换空间上的流体动力学(通过空间的量子化获得)被表述为颗粒材料的流体动力学。昆虫。如图2所示,使用Moyal乘积对空间进行量化,对由此获得的二维流体进行流体动力学模拟,该流体在有障碍物的通道内流动。在流体粒子的大小为零和有限的两种情况下,获得的结果不同。差异似乎来自障碍物产生的涡流的行为。昆虫。3、将涡旋视为弦,考察两种模型;一种是混合模型,其中涡流通过交换 Kalb-Ramond 场(流函数的泛化)相互作用,另一种是更一般的弦场理论,其中 Kalb-Ramond 场是弦振动的激发模式之一。在弦场论中,引入了Altarelli-Parisi型演化方程。当能量尺度改变时,这有望描述湍流内涡旋分布函数的响应。与粒子理论相比,弦理论中粘度的行为不同,因此可以修改引入粘度的Landau流体理论。总之,流体动力学和弦理论几乎是相同的理论。然而,应该注意的是,再现给定流体动力学所需的弦理论不是通常的弦理论。在弦场论中,引入了Altarelli-Parisi型演化方程。当能量尺度改变时,这有望描述湍流内涡旋分布函数的响应。与粒子理论相比,弦理论中粘度的行为不同,因此可以修改引入粘度的Landau流体理论。总之,流体动力学和弦理论几乎是相同的理论。然而,应该注意的是,再现给定流体动力学所需的弦理论不是通常的弦理论。在弦场论中,引入了Altarelli-Parisi型演化方程。当能量尺度改变时,这有望描述湍流内涡旋分布函数的响应。与粒子理论相比,弦理论中粘度的行为不同,因此可以修改引入粘度的Landau流体理论。总之,流体动力学和弦理论几乎是相同的理论。然而,应该注意的是,再现给定流体动力学所需的弦理论不是通常的弦理论。与粒子理论相比,弦理论中粘度的行为不同,因此可以修改引入粘度的Landau流体理论。总之,流体动力学和弦理论几乎是相同的理论。然而,应该注意的是,再现给定流体动力学所需的弦理论不是通常的弦理论。与粒子理论相比,弦理论中粘度的行为不同,因此可以修改引入粘度的Landau流体理论。总之,流体动力学和弦理论几乎是相同的理论。然而,应该注意的是,再现给定流体动力学所需的弦理论不是通常的弦理论。
更新日期:2021-04-22
down
wechat
bug