当前位置: X-MOL 学术IEEE Trans. Comput. Imaging › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SRNSSI: A Deep Light-Weight Network for Single Image Super Resolution Using Spatial and Spectral Information
IEEE Transactions on Computational Imaging ( IF 4.2 ) Pub Date : 2021-04-02 , DOI: 10.1109/tci.2021.3070522
Alireza Esmaeilzehi , M. Omair Ahmad , M.N.S. Swamy

Design of a residual block that provides a rich set of features while requiring only small numbers of parameters and operations is crucial for the task of single image super resolution. This is especially important in applications with limited power and storage capacity. In this paper, a new multi-domain residual block is proposed in order to generate richer set of features for the task of image super resolution. The proposed residual block consists of two feature generation modules. The first one is a spatial information processing module and the second one is a spectral information processing module. The feature maps obtained by these two feature generation modules are concatenatively fused to obtain block's output. The new residual block is used to build light-weight super resolution networks. Extensive experiments are performed using several benchmark datasets in order to evaluate the performance of the networks using the new multi-domain residual block. It is shown that the use of both the spatial and spectral features enhances the performance of the light-weight super resolution networks.

中文翻译:


SRNSSI:使用空间和光谱信息实现单图像超分辨率的深度轻量级网络



残差块的设计能够提供丰富的特征,同时只需要少量的参数和操作,这对于单图像超分辨率的任务至关重要。这对于功率和存储容量有限的应用尤其重要。在本文中,提出了一种新的多域残差块,以便为图像超分辨率任务生成更丰富的特征集。所提出的残差块由两个特征生成模块组成。第一个是空间信息处理模块,第二个是光谱信息处理模块。这两个特征生成模块获得的特征图被连接融合以获得块的输出。新的残差块用于构建轻量级超分辨率网络。使用多个基准数据集进行了广泛的实验,以便使用新的多域残差块评估网络的性能。结果表明,空间和光谱特征的使用增强了轻量级超分辨率网络的性能。
更新日期:2021-04-02
down
wechat
bug