当前位置: X-MOL 学术Energy Convers. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Global vision from the thermodynamics of the effect of the bio-oil composition and the reforming strategies in the H2 production and the energy requirement
Energy Conversion and Management ( IF 9.9 ) Pub Date : 2021-04-30 , DOI: 10.1016/j.enconman.2021.114181
Leire Landa , Aingeru Remiro , Rocío de la Torre , Roberto Aguado , Javier Bilbao , Ana G. Gayubo

The yield of H2 and by-products and the heat duties in the reforming of different oxygenates in bio-oil (acids, ketones, aldehydes, phenols and saccharides) have been compared by means of thermodynamic analysis, focusing on steam reforming (SR), oxidative steam reforming (OSR) and autothermal reforming (ATR) as alternatives. The study is performed by minimization of Gibb's energy method with ProII-Simsci® 10.1 software and has been extended for a wide range of conditions (temperature, steam/carbon (S/C) and O2/C ratios, and inert gas addition). The results of products yield and heat duties of SR are slightly different with oxygenates of different nature, and S/C = 5 and 610–644 °C range are the most suitable conditions for attaining high equilibrium H2 yield (90–92%) without excessive penalty in energy requirements. At S/C = 1.5, the inert addition increases slightly hydrogen yield and decreases coke formation, but this effect is not significant for S/C ratios above 5. Original correlations are proposed to predict the maximum yield of H2 and byproducts and the optimum temperature for the SR of oxygenates, from the values of the C/S ratio in the feed and the H/C, O/C and O/H ratios characteristic of the oxygenates composition. At 630 °C, ATR regime is achieved with a different O2/C ratio for the oxygenates, in the 0.12–0.22 range (aldehydes < acids ≈ phenols < ketones), and with H2 yield of 83–77%.



中文翻译:

从热力学对生物油成分的影响以及H 2生产和能源需求中的重整策略的全局视野

通过热力学分析比较了生物油中H 2和副产物的产率以及重整生物油中各种含氧化合物(酸,酮,醛,酚和糖类)的热负荷,重点是蒸汽重整(SR) ,氧化蒸汽重整(OSR)和自热重整(ATR)作为替代方案。该研究是通过使用ProII-Simsci®10.1软件最大限度地降低Gibb的能量方法来进行的,并已扩展到多种条件(温度,蒸汽/碳(S / C)和O 2 / C比以及惰性气体添加) 。SR的产品收率和热负荷的结果在不同性质的含氧化合物上略有不同,S / C = 5和610–644°C范围是获得高平衡H 2的最合适条件收率(90–92%),而对能源需求没有过多的惩罚。在S / C = 1.5时,惰性添加会略微增加氢气产量并减少焦炭形成,但是对于高于5的S / C比而言,这种影响并不明显。建议采用原始相关性来预测H 2和副产物的最大产量和最佳根据进料中C / S比的值以及含氧化合物组成的H / C,O / C和O / H比,确定含氧化合物SR的温度。在630°C时,对于含氧化合物,OTR的不同O 2 / C比值在0.12-0.22范围内(醛<酸≈苯酚<酮),H 2产率为83-77%,可以实现ATR方案。

更新日期:2021-04-30
down
wechat
bug