当前位置: X-MOL 学术Exp. Appl. Acarol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Feeding design in free-living mesostigmatid chelicerae (Acari: Anactinotrichida)
Experimental and Applied Acarology ( IF 1.8 ) Pub Date : 2021-04-30 , DOI: 10.1007/s10493-021-00612-8
Clive E Bowman 1
Affiliation  

A model based upon mechanics is used in a re-analysis of historical acarine morphological work augmented by an extra seven zoophagous mesostigmatid species. This review shows that predatory mesostigmatids do have cheliceral designs with clear rational purposes. Almost invariably within an overall body size class, the switch in predatory style from a worm-like prey feeding (‘crushing/mashing’ kill) functional group to a micro-arthropod feeding (‘active prey cutting/slicing/slashing' kill) functional group is matched by: an increased cheliceral reach, a bigger chelal gape, a larger morphologically estimated chelal crunch force, and a drop in the adductive lever arm velocity ratio of the chela. Small size matters. Several uropodines (Eviphis ostrinus, the omnivore Trachytes aegrota, Urodiaspis tecta and, Uropoda orbicularis) have more elongate chelicerae (greater reach) than their chelal gape would suggest, even allowing for allometry across mesostigmatids. They may be: plesiosaur-like high-speed strikers of prey, scavenging carrion feeders (like long-necked vultures), probing/burrowing crevice feeders of cryptic nematodes, or small morsel/fragmentary food feeders. Some uropodoids have chelicerae and chelae which probably work like a construction-site mechanical excavator-digger with its small bucket. Possible hoeing/bulldozing, spore-cracking and tiny sabre-tooth cat-like striking actions are discussed for others. Subtle changes lead small mesostigmatids to be predator–scavengers (mesocarnivores) or to be predator–fungivores (hypocarnivores). Some uropodines (e.g., the worm-like prey feeder Alliphis siculus and, Uropoda orbicularis) show chelae similar in design to astigmatids and cryptostigmatids indicating possible facultative saprophagy. Scale matters—obligate predatory designs (hypercarnivory) start for mesostigmatids with chelal gape > 150 μm and cheliceral reach > 350 μm (i.e., about 500–650 μm in body size). Commonality of trophic design in these larger species with solifugids is indicated. Veigaia species with low chelal velocity ratio and other morphological strengthening specialisms, appear specially adapted in a concerted way for predating active soft and fast moving springtails (Collembola). Veigaia cerva shows a markedly bigger chelal gape than its cheliceral reach would proportionately infer suggesting it is a crocodile-like sit-and-wait or ambush predator par excellence. A small chelal gape, low cheliceral reach, moderate velocity ratio variant of the worm-like feeding habit design is supported for phytoseiid pollenophagy. Evidence for a resource partitioning model in the evolution of gnathosomal development is found. A comparison to crustacean claws and vertebrate mandibles is made. Alliphis siculus and Rhodacarus strenzkei are surprisingly powerful mega-cephalics for their small size. Parasitids show a canid-like trophic design. The chelicera of the nematophagous Alliphis halleri shows felid-like features. Glyphtholaspis confusa has hyaena-like cheliceral dentition. The latter species has a markedly smaller chelal gape than its cheliceral reach would suggest proportionately, which together with a high chelal velocity ratio and a high estimated chelal crunch force matches a power specialism of feeding on immobile tough fly eggs/pupae by crushing (durophagy). A consideration of gnathosomal orientation is made. Predatory specialisms appear to often match genera especially in larger mesostigmatids, which may scale quite differently. Comparison to holothyrids and opilioacarids indicates that the cheliceral chelae of the former are cutting-style and those of the latter are crushing-style. A simple validated easy-to-use ‘2:1 on’ predictive algorithm of feeding habit type is included based on a strength-speed tradeoff in chelal velocity ratio for ecologists to test in the field.



中文翻译:

自由生活的中柱状螯肢动物(蜱螨亚纲:Anactinotrichida)的饲养设计

基于力学的模型用于对历史螨形态学工作的重新分析,并通过额外的七个食性中柱螨物种进行了增强。这篇综述表明,掠食性中耻骨确实具有具有明确合理目的的螯肢设计。在总体体型大小类别中,捕食方式几乎总是从蠕虫状猎物摄食(“压碎/捣碎”杀死)功能组到微型节肢动物摄食(“主动猎物切割/切片/砍杀”杀死)功能组的转变组的匹配是:螯合范围增加、螯合张开更大、形态估计的螯合力更大以及螯合杠杆臂速度比下降。小尺寸很重要。几种尾足类动物(Eviphis ostrinus、杂食性Trachytes aegrotaUrodiaspis tectaUropoda orbicalis)的螯肢比它们的螯张所暗示的更细长(更大的范围),甚至允许跨中耻骨进行异速生长。它们可能是:类似蛇颈龙的高速猎物攻击者、腐肉食腐动物(如长颈秃鹰)、隐秘线虫的探查/挖洞缝隙食动物,或小块/碎片食物食动物。一些尾足类动物有螯肢和螯,其工作方式可能类似于带有小铲斗的建筑工地机械挖掘机。其他人还讨论了可能的锄地/推土、孢子破裂和小型剑齿猫般的攻击行为。微妙的变化导致小型中柱头动物成为捕食者-食腐动物(中食肉动物)或捕食者-食真菌动物(低肉食动物)。一些尾足动物(例如,蠕虫状的猎物饲养者Alliphis siculusUropoda orbicalis)的螯设计与散光和隐散光相似,表明可能存在兼性腐食。规模问题——专性掠食性设计(超肉食性)始于螯合张口 > 150 μm 且螯合范围 > 350 μm(即体型约 500-650 μm)的中耻。指出了这些具有固形体的较大物种的营养设计的共性。具有低螯合速度比和其他形态强化特性的Veigaia物种,似乎特别适合捕食活跃的柔软且快速移动的跳虫(跳虫)。Veigaia cerva 的螯合张口明显大于其螯合范围,这表明它是一种像鳄鱼一样的坐等或伏击捕食者。。类似蠕虫的食性设计的小螯合张口、低螯合范围、中等速度比变体支持植绥花粉吞噬。找到了颌体发育进化中资源分配模型的证据。与甲壳类动物的爪子和脊椎动物的下颌骨进行了比较。Alliphis siculusRhodacarus strenzkei体型虽小,但却是极其强大的巨型头颅动物。寄生物表现出类似犬科动物的营养设计。食线虫Alliphis Halleri的螯肢显示出类似猫科动物的特征。Glyphtholaspis confusa具有类似鬣狗的螯齿列。后一种物种的螯合张口明显小于其螯合范围按比例显示的大小,再加上高螯合速度比和高估计螯合力,与通过压碎(硬食性)以不动的坚韧苍蝇卵/蛹为食的动力专长相匹配。考虑颌体方向。捕食性专长似乎经常与属相匹配,尤其是在较大的中柱目中,它们的规模可能截然不同。与全甲虫和阿片甲虫相比,前者的螯为切割型,后者的螯为压碎型。包含一个简单、经过验证、易于使用的进食习惯类型“2:1”预测算法,该算法基于螯合速度比的强度-速度权衡,供生态学家在现场进行测试。

更新日期:2021-04-30
down
wechat
bug