当前位置: X-MOL 学术J. Frict. Wear › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structural-Energy Interpretation of a Tribosystem
Journal of Friction and Wear ( IF 0.5 ) Pub Date : 2021-04-30 , DOI: 10.3103/s1068366621020033
S. V. Fedorov

Abstract

The article is devoted to a general structural-energy analysis of the phenomenon of friction and consideration of a tribosystem as the central concept of tribology. Friction is studied as a transformational energy process with a systemic property and obeys the energy balance equation. The structural-energy model of elastic–plastic deformation of contact volumes is accepted as the main mechanism of energy transformation and dissipation during friction. The existence of a certain critical friction volume is indicated. The friction energy balance equation is considered, which represents friction as competition between two simultaneously acting, interrelated, and opposite micro-processes in the contact volume: the accumulation of latent (potential) energy of various defects in a crystal structure and its transformation and dissipation. The energy interpretation of the friction coefficient is given, and the diagrammatic regularities of the structural and energy evolution of rubbing surfaces (friction contact) are analyzed. The area of existence of an elementary tribosystem is determined. The regularities of the most complete evolution of equilibrium friction contact (elementary tribosystem) to the formation of a set of mechanical (nano) quanta—tribosubsystems—are formulated. An elementary tribosystem is defined as an integer consisting of a set. The study substantiates the practical areas of the diagrammatic existence of run-in and compatibility, the ranges of friction and antifriction, and the limits of technological and machine friction.



中文翻译:

摩擦系统的结构能解释

摘要

本文致力于摩擦现象的一般结构能分析,并将摩擦系统作为摩擦学的中心概念。摩擦被研究为具有系统性质的转化能量过程,并遵守能量平衡方程。接触体积的弹塑性变形的结构能模型被认为是摩擦过程中能量转化和耗散的主要机理。表明存在一定的临界摩擦体积。考虑了摩擦能平衡方程,该方程将摩擦表示为接触体积中两个同时作用,相互关联和相对的微过程之间的竞争:晶体结构中各种缺陷的潜能(势能)的积累及其转化和耗散。给出了摩擦系数的能量解释,并分析了摩擦表面(摩擦接触)的结构和能量演化的图解规律。确定基本摩擦系统的存在区域。拟定了最完整的平衡摩擦接触(基本摩擦系统)演化过程,以形成一组机械(纳米)量子-摩擦子系统-的规律。基本摩擦系统定义为由一组组成的整数。该研究证实了磨合和兼容性,摩擦和减摩范围以及技术和机械摩擦极限的图解存在的实际领域。并分析了摩擦表面(摩擦接触)的结构和能量演化的图解规律。确定基本摩擦系统的存在区域。拟定了最完整的平衡摩擦接触(基本摩擦系统)演化过程,以形成一组机械(纳米)量子-摩擦子系统-的规律。基本摩擦系统定义为由一组组成的整数。该研究证实了磨合和兼容性,摩擦和减摩范围以及技术和机械摩擦极限的图解存在的实际领域。并分析了摩擦表面(摩擦接触)的结构和能量演化的图解规律。确定基本摩擦系统的存在区域。拟定了最完整的平衡摩擦接触(基本摩擦系统)演化过程,以形成一组机械(纳米)量子-摩擦子系统-的规律。基本摩擦系统定义为由一组组成的整数。该研究证实了磨合和兼容性,摩擦和减摩范围以及技术和机械摩擦极限的图解存在的实际领域。拟定了最完整的平衡摩擦接触(基本摩擦系统)演化过程,以形成一组机械(纳米)量子-摩擦子系统-的规律。基本摩擦系统定义为由一组组成的整数。该研究证实了磨合和兼容性,摩擦和减摩范围以及技术和机械摩擦极限的图解存在的实际领域。拟定了最完整的平衡摩擦接触(基本摩擦系统)演化过程,以形成一组机械(纳米)量子-摩擦子系统-的规律。基本摩擦系统定义为由一组组成的整数。该研究证实了磨合和兼容性,摩擦和减摩范围以及技术和机械摩擦极限的图解存在的实际领域。

更新日期:2021-04-30
down
wechat
bug