当前位置: X-MOL 学术Phys. Rev. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correlation Between Corrugation-Induced Flexoelectric Polarization and Conductivity of Low-Dimensional Transition Metal Dichalcogenides
Physical Review Applied ( IF 3.8 ) Pub Date : 2021-04-29 , DOI: 10.1103/physrevapplied.15.044051
Anna N. Morozovska , Eugene A. Eliseev , Hanna V. Shevliakova , Yaroslava Yu. Lopatina , Galina I. Dovbeshko , Maya D. Glinchuk , Yunseok Kim , Sergei V. Kalinin

The tunability of polar and semiconducting properties of low-dimensional transition metal dichalcogenides (TMDs) have propelled them to the forefront of fundamental and applied physical research. These materials can vary their electrophysical properties from nonpolar to ferroelectric, and from direct-band semiconducting to metallic. In addition to classical controlling factors, such as field effect, composition, and doping, new degrees of freedom emerge in TMDs due to the curvature-induced electron redistribution and the associated changes in electronic properties. Here we theoretically explore the elastic and electric fields, flexoelectric polarization and free charge density for a TMD nanoflake placed on a rough substrate with a sinusoidal corrugation profile. Finite element modelling results for different flake thickness and corrugation depth yield insights into the flexoelectric nature of the out-of-plane electric polarization and establish the unambiguous correlation between the polarization and static conductivity modulation. The modulation is caused by the coupling between the deformation potential and inhomogeneous elastic strains, which evolve in the TMD nanoflake due to the adhesion between the flake surface and corrugated substrate. We reveal a pronounced maximum in the thickness dependences of the electron and hole conductivity of MoS2 and MoTe2 nanoflakes placed on a corrugated substrate, which opens the way for the optimization of their geometry towards significant improvement in their polar and electronic properties, necessary for advanced applications in nanoelectronics and memory devices. Specifically, the obtained results can be useful for the development of nanoscale straintronic devices based on the bended MoS2, MoTe2, and MoSTe nanoflakes, such as diodes and bipolar transistors with a bending-controllable sharpness of p-n junctions.

中文翻译:

波纹诱导的柔电极化与低维过渡金属双硫属元素化物电导率的相关性

低维过渡金属二硫化碳(TMD)的极性和半导体性质的可调谐性将它们推向了基础和应用物理研究的前沿。这些材料可以将其电物理性质从非极性更改为铁电,从直接带半导体更改为金属。除了经典的控制因素(例如场效应,组成和掺杂)以外,由于曲率引起的电子再分布以及相关的电子特性变化,TMD中还出现了新的自由度。在这里,我们从理论上探讨了放置在具有正弦波纹轮廓的粗糙基板上的TMD纳米片的弹性和电场,柔电极化和自由电荷密度。不同薄片厚度和波纹深度的有限元建模结果可深入了解面外极化的柔电特性,并建立极化与静态电导率调制之间的明确关联。调制是由形变势与不均匀弹性应变之间的耦合引起的,由于薄片表面与波纹状基材之间的粘附力,它们在TMD纳米薄片中演化。我们揭示了电子的厚度依赖性和空穴电导率的显着最大值 调制是由形变势与不均匀弹性应变之间的耦合引起的,由于薄片表面与波纹状基材之间的粘附力,它们在TMD纳米薄片中演化。我们揭示了电子的厚度依赖性和空穴电导率的显着最大值 调制是由形变势与不均匀弹性应变之间的耦合引起的,由于薄片表面与波纹状基材之间的粘附力,它们在TMD纳米薄片中演化。我们揭示了电子的厚度依赖性和空穴电导率的显着最大值小号2个2个将纳米薄片置于波纹状基材上,这为优化其几何形状,显着改善其极性和电子性能开辟了道路,这是纳米电子学和存储设备中先进应用所必需的。具体而言,所获得的结果对于基于弯曲的纳米级应变电子器件的开发可能是有用的。小号2个2个, 和 小号纳米薄片,例如具有可弯曲控制的p - n结锐度的二极管和双极晶体管。
更新日期:2021-04-30
down
wechat
bug