当前位置: X-MOL 学术Biointerphases › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Detection of gold cysteine thiolate complexes on gold nanoparticles with time-of-flight secondary ion mass spectrometry
Biointerphases ( IF 1.6 ) Pub Date : 2021-04-02 , DOI: 10.1116/6.0000910
Heng-Yong Nie 1 , Elena Romanovskaia 2 , Valentin Romanovski 3 , Jonas Hedberg 1 , Yolanda S Hedberg 1
Affiliation  

Gold (Au) nanoparticles (NPs) are widely used in nanomedical applications as a carrier for molecules designed for different functionalities. Previous findings suggested that biological molecules, including amino acids, could contribute to the dissolution of Au NPs in physiological environments and that this phenomenon was size-dependent. We, therefore, investigated the interactions of L-cysteine with 5-nm Au NPs by means of time-of-flight secondary ion mass spectrometry (ToF-SIMS). This was achieved by loading Au NPs on a clean aluminum (Al) foil and immersing it in an aqueous solution containing L-cysteine. Upon rinsing off the excessive cysteine molecules, ToF-SIMS confirmed the formation of gold cysteine thiolate via the detection of not only the Au–S bond but also the hydrogenated gold cysteine thiolate molecular ion. The presence of NaCl or a 2-(N-morpholino)ethanesulfonic acid buffer disabled the detection of Au NPs on the Al foil. The detection of larger (50-nm) Au NPs was possible but resulted in weaker cysteine and gold signals, and no detected gold cysteine thiolate signals. Nano-gold specific adsorption of L-cysteine was also demonstrated by cyclic voltammetry using paraffine-impregnated graphite electrodes with deposited Au NPs. We demonstrate that the superior chemical selectivity and surface sensitivity of ToF-SIMS, via detection of elemental and molecular species, provide a unique ability to identify the adsorption of cysteine and formation of gold–cysteine bonds on Au NPs.

中文翻译:

使用飞行时间二次离子质谱法检测金纳米粒子上的金半胱氨酸硫醇盐配合物

金 (Au) 纳米粒子 (NP) 被广泛用于纳米医学应用中,作为为不同功能设计的分子的载体。先前的研究结果表明,包括氨基酸在内的生物分子可能有助于 Au NPs 在生理环境中的溶解,并且这种现象与大小有关。因此,我们通过飞行时间二次离子质谱 (ToF-SIMS) 研究了 L-半胱氨酸与 5-nm Au NPs 的相互作用。这是通过将 Au NPs 加载到干净的铝 (Al) 箔上并将其浸入含有 L-半胱氨酸的水溶液中来实现的。在冲洗掉过量的半胱氨酸分子后,ToF-SIMS 通过不仅检测 Au-S 键而且检测氢化半胱氨酸硫醇金分子离子,证实了金半胱氨酸硫醇盐的形成。NaCl 或 2-(N-吗啉代) 乙磺酸缓冲液的存在使铝箔上的 Au NP 无法检测。可以检测到较大的 (50 nm) Au NP,但导致半胱氨酸和金信号较弱,并且未检测到金半胱氨酸硫醇盐信号。L-半胱氨酸的纳米金特异性吸附也通过循环伏安法使用石蜡浸渍的石墨电极和沉积的 Au NP 来证明。我们证明了 ToF-SIMS 优异的化学选择性和表面敏感性,通过检测元素和分子种类,提供了一种独特的能力来识别半胱氨酸的吸附和金 - 半胱氨酸键在 Au NPs 上的形成。可以检测到较大的 (50 nm) Au NP,但导致半胱氨酸和金信号较弱,并且未检测到金半胱氨酸硫醇盐信号。L-半胱氨酸的纳米金特异性吸附也通过循环伏安法使用石蜡浸渍的石墨电极和沉积的 Au NP 来证明。我们证明了 ToF-SIMS 优异的化学选择性和表面敏感性,通过检测元素和分子种类,提供了一种独特的能力来识别半胱氨酸的吸附和金 - 半胱氨酸键在 Au NPs 上的形成。可以检测到较大的 (50 nm) Au NP,但导致半胱氨酸和金信号较弱,并且未检测到金半胱氨酸硫醇盐信号。L-半胱氨酸的纳米金特异性吸附也通过循环伏安法使用石蜡浸渍的石墨电极和沉积的 Au NP 来证明。我们证明了 ToF-SIMS 优异的化学选择性和表面敏感性,通过检测元素和分子种类,提供了一种独特的能力来识别半胱氨酸的吸附和金 - 半胱氨酸键在 Au NPs 上的形成。
更新日期:2021-04-30
down
wechat
bug