当前位置: X-MOL 学术APL Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spectral splitting and concentration of broadband light using neural networks
APL Photonics ( IF 5.4 ) Pub Date : 2021-04-01 , DOI: 10.1063/5.0042532
Alim Yolalmaz 1, 2, 3 , Emre Yüce 1, 2, 3
Affiliation  

Compact photonic elements that control both the diffraction and interference of light offer superior performance at ultra-compact dimensions. Unlike conventional optical structures, these diffractive optical elements can provide simultaneous control of spectral and spatial profiles of light. However, the inverse design of such a diffractive optical element is time-consuming with current algorithms, and the designs generally lack experimental validation. Here, we develop a neural network model to experimentally design and validate SpliCons; a special type of diffractive optical element that can achieve spectral splitting and simultaneous concentration of broadband light. We use neural networks to exploit nonlinear operations that result from wavefront reconstruction through a phase plate. Our results show that the neural network model yields enhanced spectral splitting performance for phase plates with quantitative assessment compared to phase plates that are optimized via the local search optimization algorithm. The capabilities of the phase plates optimized via the neural network are experimentally validated by comparing the intensity distribution at the output plane. Once the neural networks are trained, we manage to design SpliCons with 96.6% ± 2.3% accuracy within 2 s, which is orders of magnitude faster than iterative search algorithms. We openly share the fast and efficient framework that we develop in order to contribute to the design and implementation of diffractive optical elements that can lead to transformative effects in microscopy, spectroscopy, and solar energy applications.

中文翻译:

使用神经网络的宽带光的光谱分裂和集中

控制光的衍射和干涉的紧凑型光子元件在超紧凑的尺寸上提供了卓越的性能。与传统的光学结构不同,这些衍射光学元件可以同时控制光的光谱和空间轮廓。然而,使用当前算法,这种衍射光学元件的逆设计是耗时的,并且该设计通常缺乏实验验证。在这里,我们开发了一个神经网络模型来实验设计和验证SpliCons。一种特殊类型的衍射光学元件,可以实现光谱分裂和宽带光的同时聚集。我们使用神经网络来研究通过波前重建通过相位板产生的非线性运算。我们的结果表明,与通过局部搜索优化算法进行优化的相板相比,具有定量评估的相板具有更高的光谱分离性能。通过比较输出平面上的强度分布,通过实验验证了通过神经网络优化的相位板的功能。一旦训练了神经网络,我们就可以在2 s内以96.6%±2.3%的精度设​​计SpliCons,这比迭代搜索算法要快几个数量级。我们公开分享我们开发的快速有效的框架,以帮助衍射光学元件的设计和实现,这些光学元件可以在显微镜,光谱学和太阳能应用中产生转换效果。
更新日期:2021-04-30
down
wechat
bug