当前位置: X-MOL 学术Adv. Nonlinear Stud. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-Degeneracy of Peak Solutions to the Schrödinger–Newton System
Advanced Nonlinear Studies ( IF 2.1 ) Pub Date : 2021-05-01 , DOI: 10.1515/ans-2021-2128
Qing Guo 1 , Huafei Xie 2
Affiliation  

We are concerned with the following Schrödinger–Newton problem: -ε2⁢Δ⁢u+V⁢(x)⁢u=18⁢π⁢ε2⁢(∫ℝ3u2⁢(ξ)|x-ξ|⁢𝑑ξ)⁢u,x∈ℝ3.-\varepsilon^{2}\Delta u+V(x)u=\frac{1}{8\pi\varepsilon^{2}}\Bigg{(}\int_{% \mathbb{R}^{3}}\frac{u^{2}(\xi)}{|x-\xi|}\,d\xi\Bigg{)}u,\quad x\in\mathbb{R}^% {3}. For ε small enough, we prove the non-degeneracy of the positive solution to the above problem, that is, the corresponding linear operator ℒε⁢(η)=-ε2⁢Δ⁢η⁢(x)+V⁢(x)⁢η⁢(x)-18⁢π⁢ε2⁢(∫ℝ3uε2⁢(ξ)|x-ξ|⁢𝑑ξ)⁢η⁢(x)-14⁢π⁢ε2⁢(∫ℝ3uε⁢(ξ)⁢η⁢(ξ)|x-ξ|⁢𝑑ξ)⁢uε⁢(x)\mathcal{L}_{\varepsilon}(\eta)=-\varepsilon^{2}\Delta\eta(x)+V(x)\eta(x)-% \frac{1}{8\pi\varepsilon^{2}}\Bigg{(}\int_{\mathbb{R}^{3}}\frac{u_{\varepsilon% }^{2}(\xi)}{|x-\xi|}\,d\xi\Bigg{)}\eta(x)-\frac{1}{4\pi\varepsilon^{2}}\Bigg{(% }\int_{\mathbb{R}^{3}}\frac{u_{\varepsilon}(\xi)\eta(\xi)}{|x-\xi|}\,d\xi\Bigg% {)}u_{\varepsilon}(x) is non-degenerate, i.e., ℒε⁢(ηε)=0⇒ηε=0{\mathcal{L}_{\varepsilon}(\eta_{\varepsilon})=0\Rightarrow\eta_{\varepsilon}=0} for small ε>0{\varepsilon>0}. The main tools are the local Pohozaev identities and the blow-up analysis. This may be the first non-degeneracy result on the peak solutions to the Schrödinger–Newton system.

中文翻译:

Schrödinger–Newton系统的峰解的非简并性

我们关注以下薛定ding-牛顿问题:-ε2⁢Δ⁢u+V⁢(x)⁢u=18⁢π⁢ε2⁢(∫⁢3u2⁢(ξ)|x-ξ|⁢𝑑ξ)⁢u, x∈ℝ3.- \ varepsilon ^ {2} \ Delta u + V(x)u = \ frac {1} {8 \ pi \ varepsilon ^ {2}} \ Bigg {(} \ int _ {%\ mathbb {R } ^ {3}} \ frac {u ^ {2}(\ xi)} {| x- \ xi |} \,d \ xi \ Bigg {)} u,\ quad x \ in \ mathbb {R} ^ %{3}。对于足够小的ε,我们证明了上述问题的正解的非退化性,即对应的线性算子ℒε⁢(η)=-ε2⁢Δ⁢η⁢(x)+V⁢(x)⁢ η⁢(x)-18⁢π⁢ε2⁢(∫ℝ3uε2⁢(ξ)|x-ξ|⁢𝑑ξ)⁢η⁢(x)-14⁢π⁢ε2⁢(∫ℝ3uε⁢(ξ)⁢η⁢ (ξ)|x-ξ|⁢𝑑ξ)⁢uε⁢(x)\ mathcal {L} _ {\ varepsilon}(\ eta)=-\ varepsilon ^ {2} \ Delta \ eta(x)+ V(x )\ eta(x)-%\ frac {1} {8 \ pi \ varepsilon ^ {2}} \ Bigg {(} \ int _ {\ mathbb {R} ^ {3}} \ frac {u _ {\ varepsilon% } ^ {2}(\ xi)} {| x- \ xi |} \,d \ xi \ Bigg {)} \ eta(x)-\ frac {1} {4 \ pi \ varepsilon ^ {2}} \ Bigg {(%} \ int _ {\ mathbb {R} ^ {3}} \ frac {u _ {\ varepsilon}(\ xi)\ eta(\ xi)} {| x- \ xi |} \,d \ xi \ Bigg%{}} u _ {\ varepsilon}(x)是简并的,即ℒε⁢(ηε)=0⇒ηε= 0 {\ mathcal {L} _ {\ varepsilon}(\ eta_ { \ varepsilon})= 0 \ Rightarrow \ eta _ {\ varepsilon} = 0}对于较小的ε> 0 {\ varepsilon> 0}。主要工具是本地Pohozaev身份和爆炸分析。这可能是Schrödinger-Newton系统的峰值解的第一个非简并性结果。
更新日期:2021-04-29
down
wechat
bug