当前位置: X-MOL 学术Results Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on spectral properties of local graphene-assisted micro-nanostructures
Results in Physics ( IF 4.4 ) Pub Date : 2021-04-27 , DOI: 10.1016/j.rinp.2021.104207
Yingzhuo Tong , Bing Wang , Chao Ge , Haiying Song , Shibing Liu

The design and fabrication of the micro-nanostructures on materials surface is a challenging technology which can modulate and control the selective broadband spectra radiation, and the light-matter interaction mechanism behind have become the main research direction of filters, absorbers, heat radiators and other devices. Due to its high carrier mobility and excellent optical properties, graphene combined with microstructure, is likely to make great contributions to the field of spectral manipulation. In this paper, the finite-difference time-domain (FDTD) method is used to simulate the combination of graphene and microstructure. Using graphene to assist silicon, copper and nickel materials with different structures by exploring their spectral selectivity manipulation. Regarding the presence or absence of graphene, we designed grating structure model and pore array structure model for these three materials respectively, and studied the change of reflection spectrum by changing the micro-nanostructures parameters of the model. It was found that when the graphene and the substrate lattice were properly matched, the absorption effect of grating structures coated with graphene was stronger than that of grating structures without graphene when the incident light wavelength in the range of 300 nm–800 nm. At the same time, it is confirmed that the absorption effect of the grating structure is better than that of the hole array structure under the same incident light wavelength.



中文翻译:

石墨烯辅助纳米结构的光谱特性研究

材料表面微纳米结构的设计与制造是一项具有挑战性的技术,可以调制和控制选择性宽带光谱辐射,其背后的光-质相互作用机制已成为滤光片,吸收器,散热器等的主要研究方向。设备。由于其高的载流子迁移率和出色的光学性能,石墨烯与微结构的结合可能对光谱处理领域做出巨大贡献。本文采用时域有限差分法(FDTD)来模拟石墨烯与微观结构的结合。通过研究石墨烯的光谱选择性操纵,使用石墨烯辅助具有不同结构的硅,铜和镍材料。关于是否存在石墨烯,我们分别针对这三种材料设计了光栅结构模型和孔阵列结构模型,并通过改变模型的微纳米结构参数研究了反射光谱的变化。研究发现,当石墨烯和衬底晶格适当匹配时,当入射光波长在300 nm–800 nm范围内时,涂有石墨烯的光栅结构的吸收效果要强于没有石墨烯的光栅结构。同时,可以确定在相同的入射光波长下,光栅结构的吸收效果要好于孔阵列结构的吸收效果。研究发现,当石墨烯和衬底晶格适当匹配时,当入射光波长在300 nm–800 nm范围内时,涂有石墨烯的光栅结构的吸收效果要强于没有石墨烯的光栅结构。同时,可以确定在相同的入射光波长下,光栅结构的吸收效果要好于孔阵列结构的吸收效果。研究发现,当石墨烯和衬底晶格适当匹配时,当入射光波长在300 nm–800 nm范围内时,涂有石墨烯的光栅结构的吸收效果要强于没有石墨烯的光栅结构。同时,可以确定在相同的入射光波长下,光栅结构的吸收效果要好于孔阵列结构的吸收效果。

更新日期:2021-05-09
down
wechat
bug