当前位置: X-MOL 学术Wave Motion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of thermal effects on the steady-state vibrations of a rectangular plate–cavity system subjected to harmonic loading and static temperature loads using a Wave Based Method
Wave Motion ( IF 2.4 ) Pub Date : 2021-04-27 , DOI: 10.1016/j.wavemoti.2021.102748
Qiang Chen , Qingguo Fei , Hendrik Devriendt , Shaoqing Wu , Bert Pluymers , Wim Desmet

The steady-state vibro-acoustic behavior of a plate–cavity system under harmonic excitations and static temperature loads is investigated using a Wave Based Method (WBM). The solutions of the governing equations of the vibro-acoustic problem considering thermal effects are derived. The coupled wave based model is constructed based on wave functions and particular solution functions for the acoustic and structural system. The accuracy and efficiency of the WBM are verified by the Finite Element Method (FEM) on a plate–cavity system subjected to harmonic excitations and static temperature loads. Then, numerical simulations are performed to investigate the influence of thermal effects on the vibro-acoustic responses of the system. Further, the design sensitivity is implemented using the WBM. Results show that the developed WBM has a better convergence rate than FEM for the investigated plate–cavity system. Although the temperature-dependent material properties of the cavity have little effect on the plate–cavity resonant peaks of the vibro-acoustic responses, they make the other resonant peaks of sound pressure level responses shift towards higher frequency when the temperature increases. When only the thermal stresses of the structural system are considered, the plate–cavity resonant peaks of the vibro-acoustic responses shift towards lower frequency with increasing temperature. When both kinds of thermal effects are considered, the influence of structural thermal stresses plays a leading role in the plate–cavity resonant peaks of vibro-acoustic responses.



中文翻译:

波动法研究矩形板腔系统在谐波载荷和静温度载荷作用下稳态振动的热效应

使用基于波的方法(WBM)研究了板腔系统在谐波激励和静态温度载荷下的稳态振动声行为。推导了考虑热效应的振动声学问题控制方程的解。基于波的耦合模型是基于波函数以及声学和结构系统的特定解函数构造的。WBM的准确性和效率通过有限元方法(FEM)在受到谐振激励和静态温度载荷作用的板腔系统中进行了验证。然后,进行数值模拟以研究热效应对系统振动声响应的影响。此外,使用WBM实现了设计敏感性。结果表明,对于所研究的板腔系统,所开发的WBM具有比FEM更好的收敛速度。尽管空腔的温度相关材料特性对振动响应的板腔共振峰影响很小,但是当温度升高时,它们会使声压级响应的其他共振峰移向更高的频率。当仅考虑结构系统的热应力时,随着温度的升高,振动响应的板腔共振峰向低频移动。当同时考虑两种热效应时,结构热应力的影响在振动声响应的板腔共振峰中起着主导作用。尽管空腔的温度相关材料特性对振动响应的板腔共振峰影响很小,但是当温度升高时,它们会使声压级响应的其他共振峰移向更高的频率。当仅考虑结构系统的热应力时,随着温度的升高,振动响应的板腔共振峰向低频移动。当同时考虑两种热效应时,结构热应力的影响在振动声响应的板腔共振峰中起着主导作用。尽管空腔的温度相关材料特性对振动响应的板腔共振峰影响很小,但是当温度升高时,它们会使声压级响应的其他共振峰移向更高的频率。当仅考虑结构系统的热应力时,随着温度的升高,振动响应的板腔共振峰向低频移动。当同时考虑两种热效应时,结构热应力的影响在振动声响应的板腔共振峰中起着主导作用。当温度升高时,它们会使声压级响应的其他共振峰移向更高的频率。当仅考虑结构系统的热应力时,随着温度的升高,振动响应的板腔共振峰向低频移动。当同时考虑两种热效应时,结构热应力的影响在振动声响应的板腔共振峰中起着主导作用。当温度升高时,它们会使声压级响应的其他共振峰移向更高的频率。当仅考虑结构系统的热应力时,随着温度的升高,振动响应的板腔共振峰向低频移动。当同时考虑两种热效应时,结构热应力的影响在振动声响应的板腔共振峰中起着主导作用。

更新日期:2021-05-06
down
wechat
bug