当前位置: X-MOL 学术Phys. Rev. Materials › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal-insulator transition inn-type bulk crystals and films of strongly compensatedSrTiO3
Physical Review Materials ( IF 3.1 ) Pub Date : 2021-04-27 , DOI: 10.1103/physrevmaterials.5.044606
Yi Huang , Y. Ayino , B. I. Shklovskii

We start by analyzing experimental data of Spinelli et al. [Phys. Rev. B 81, 155110 (2010)] for the conductivity of n-type bulk crystals of SrTiO3 (STO) with broad electron concentration n range of 4×10154×1020cm3, at low temperatures. We obtain a good fit of the conductivity data, σ(n), by the Drude formula for nnc3×1016cm3 assuming that used for doping insulating STO bulk crystals are strongly compensated and the total concentration of background charged impurities is N=1019cm3. At n<nc, the conductivity collapses with decreasing n and the Drude theory fit fails. We argue that this is the metal-insulator transition (MIT) in spite of the very large Bohr radius of hydrogenlike donor state aB700 nm with which the Mott criterion of MIT for a weakly compensated semiconductor, naB30.02, predicts 105 times smaller nc. We try to explain this discrepancy in the framework of the theory of the percolation MIT in a strongly compensated semiconductor with the same N=1019cm3. In the second part of this paper, we develop the percolation MIT theory for films of strongly compensated semiconductors. We apply this theory to doped STO films with thickness d130 nm and calculate the critical MIT concentration nc(d). We find that, for doped STO films on insulating STO bulk crystals, nc(d) grows with decreasing d. Remarkably, STO films in a low dielectric constant environment have the same nc(d). This happens due to the Rytova-Keldysh modification of a charge impurity potential which allows a larger number of the film charged impurities to contribute to the random potential.

中文翻译:

金属-绝缘体过渡Inn型块状晶体和强补偿SrTiO3薄膜

我们从分析Spinelli等人的实验数据开始[物理 版本B 81,155110(2010)]对的导电性ñ型块状晶体 钛酸锶3 (STO)具有宽电子浓度 ñ 范围 4×10154×1020厘米-3,在低温下。我们获得了良好的电导率数据拟合,σñ,由Drude公式得出 ññC3×1016厘米-3 假设用于掺杂绝缘STO块状晶体的元素得到了强烈补偿,且本底带电杂质的总浓度为 ñ=1019厘米-3。在ñ<ñC,电导率随着降低而崩溃 ñ而Drude理论的拟合失败了。我们认为,尽管氢原子供体态的玻尔半径非常大,但这仍是金属-绝缘体转变(MIT)一种700 nm,用于微补偿半导体的MIT的Mott准则, ñ一种30.02,预测 105 倍小 ñC。我们试图在渗流MIT理论的框架内解释这种差异,该渗流MIT具有相同的强补偿半导体。ñ=1019厘米-3。在本文的第二部分,我们针对强补偿半导体薄膜开发了渗滤MIT理论。我们将此理论应用于厚度为STO的掺杂STO薄膜d130 nm并计算MIT的临界浓度 ñCd。我们发现,对于绝缘STO块状晶体上的掺杂STO膜,ñCd 随着减少而增长 d。值得注意的是,在低介电常数环境中的STO膜具有相同的ñCd。这是由于电荷杂质电势的Rytova-Keldysh修饰而发生的,它允许大量薄膜电荷带电杂质贡献于随机电势。
更新日期:2021-04-27
down
wechat
bug