当前位置: X-MOL 学术Biol. Bull. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mathematical Modeling in Biology: Part 2. Models of Protein Interaction Processes in a Photosynthetic Membrane
Biology Bulletin Reviews Pub Date : 2021-04-27 , DOI: 10.1134/s2079086421020080
G. Yu. Riznichenko , A. B. Rubin

Abstract

The second part of the article concerns agent-based, multiparticle, Brownian and molecular dynamic models. In these models, the motion and interaction of individual proteins—electron carriers (Brownian multiparticle models) and individual atoms in molecules—electron carriers and their complexes (molecular dynamics) are described based on the apparatus of Brownian and molecular modeling. Direct multiparticle models explicitly simulate the Brownian diffusion of mobile protein carriers and their electrostatic interactions with multienzyme complexes, both in solution and in the interior of a biomembrane. Analysis of these models reveals the role of diffusion and electrostatic factors in the regulation of electron transport, the effect of the of reaction volume geometry, and ionic strength and pH of the cell medium on the rate of electron transport reactions between protein carriers. Through joint application methods of kinetic and Brownian multiparticle modeling make it possible to study the regulation mechanisms of electron transport processes at the subcellular and molecular levels and also mechanisms of electron-flow switching in plant and algae cells and to evaluate the optimal conditions for the obtainment of target products in microalgae cells, e.g., hydrogen as an alternative fuel. The prospects for various methods of mathematical modeling used to study subcellular systems are discussed in the conclusion. The paper is based on the results obtained at the Department of Biophysics, Biological Faculty, Moscow State University.



中文翻译:

生物学中的数学建模:第2部分。光合膜中蛋白质相互作用过程的模型

摘要

本文的第二部分涉及基于代理的,多粒子,布朗和分子动力学模型。在这些模型中,基于布朗仪器和分子模型描述了单个蛋白质(电子载体(布朗多粒子模型)和分子中单个原子)的运动和相互作用,电子载体及其配合物(分子动力学)。直接多颗粒模型明确地模拟了移动蛋白载体在溶液中和在生物膜内部的布朗扩散及其与多酶复合物的静电相互作用。对这些模型的分析揭示了扩散和静电因素在调节电子传输,反应体积几何形状的影响,离子强度和细胞培养基的pH值对蛋白质载体之间电子传输反应的速率的影响。通过动力学和布朗多粒子建模的联合应用方法,有可能研究亚细胞和分子水平上电子传输过程的调控机制,以及植物和藻类细胞中电子流转换的机制,并评估获得该化合物的最佳条件。微藻细胞中目标产物的数量,例如氢气作为替代燃料。结论中讨论了用于研究亚细胞系统的各种数学建模方法的前景。该论文基于莫斯科国立大学生物系生物物理学系获得的结果。通过动力学和布朗多粒子建模的联合应用方法,有可能研究亚细胞和分子水平上电子传输过程的调控机制,以及植物和藻类细胞中电子流转换的机制,并评估获得该化合物的最佳条件。微藻细胞中目标产物的数量,例如氢气作为替代燃料。结论中讨论了用于研究亚细胞系统的各种数学建模方法的前景。该论文基于莫斯科国立大学生物系生物物理学系获得的结果。通过动力学和布朗多粒子建模的联合应用方法,有可能研究亚细胞和分子水平上电子传输过程的调控机制,以及植物和藻类细胞中电子流转换的机制,并评估获得该化合物的最佳条件。微藻细胞中目标产物的数量,例如氢气作为替代燃料。结论中讨论了用于研究亚细胞系统的各种数学建模方法的前景。该论文基于莫斯科国立大学生物系生物物理学系获得的结果。

更新日期:2021-04-28
down
wechat
bug