当前位置: X-MOL 学术Nat. Resour. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on the Effect and Mechanism of Water Immersion on the Characteristic Temperature during Coal Low-Temperature Oxidation
Natural Resources Research ( IF 4.8 ) Pub Date : 2021-03-20 , DOI: 10.1007/s11053-021-09854-0
Xiaowei Zhai , Bobo Song , Bo Wang , Teng Ma , Hui Ge

Spontaneous combustion of dried water-immersed coal (DWIC) wastes many coal resources, and so the effect of water immersion on the characteristic temperature during coal low-temperature oxidation and its possible reasons were investigated. The characteristic temperatures of coal oxidation were obtained by thermogravimetry. The possible causes for the changes in characteristic temperatures were analyzed from the pore structure and microscopic function groups by means of liquid nitrogen adsorption/desorption experiment and in-situ Fourier transform infrared spectroscopy. The results show that, in the early stages of coal low-temperature oxidation, the characteristic temperatures of DWIC samples were lower compared to those of raw coal samples. The differences between the characteristic temperatures of the DWIC and raw coal first increased but then decreased as the temperature rose. When the coal’s temperature rose to the maximum weight gain temperature, the differences had almost disappeared. Water-immersion reduced the coal’s specific surface area but increased the average diameter of its pores and the total pore volume. These changes in the coal pores were beneficial for oxygen migration and transport. During the whole low-temperature oxidation stage, the DWIC hydroxyl concentration is higher compared to that of raw coal, and this made the initial reaction of coal and oxygen more likely to occur. In the late low-temperature oxidation stages, the methyl concentration had a considerable influence on the coal–oxygen reaction.



中文翻译:

煤低温氧化过程中水浸对特征温度的影响及其机理研究

干水浸煤的自燃燃烧浪费了许多煤炭资源,因此研究了水浸对煤低温氧化过程中特征温度的影响及其可能的原因。通过热重法获得了煤氧化的特征温度。通过液氮吸附/解吸实验和原位傅立叶变换红外光谱法,从孔隙结构和微观功能组分析了特征温度变化的可能原因。结果表明,在煤低温氧化的早期阶段,DWIC样品的特征温度低于原煤样品的特征温度。DWIC和原煤的特征温度之间的差异先随温度升高而增加,然后随温度升高而减小。当煤的温度升至最大增重温度时,差异几乎消失了。水浸减少了煤的比表面积,但增加了煤孔的平均直径和总孔体积。煤孔中的这些变化有利于氧气的迁移和运输。在整个低温氧化阶段,DWIC的羟基浓度比原煤高,这使得煤和氧的初始反应更容易发生。在低温氧化后期,甲基浓度对煤-氧反应有相当大的影响。当煤的温度升至最大增重温度时,差异几乎消失了。水浸减少了煤的比表面积,但增加了煤孔的平均直径和总孔体积。煤孔中的这些变化有利于氧气的迁移和运输。在整个低温氧化阶段,DWIC的羟基浓度比原煤的高,这使得煤和氧的初始反应更容易发生。在低温氧化后期,甲基浓度对煤-氧反应有相当大的影响。当煤的温度升至最大增重温度时,差异几乎消失了。水浸减少了煤的比表面积,但增加了煤孔的平均直径和总孔体积。煤孔中的这些变化有利于氧气的迁移和运输。在整个低温氧化阶段,DWIC的羟基浓度比原煤的高,这使得煤和氧的初始反应更容易发生。在低温氧化后期,甲基浓度对煤-氧反应有相当大的影响。水浸减少了煤的比表面积,但增加了煤孔的平均直径和总孔体积。煤孔中的这些变化有利于氧气的迁移和运输。在整个低温氧化阶段,DWIC的羟基浓度比原煤的高,这使得煤和氧的初始反应更容易发生。在低温氧化后期,甲基浓度对煤-氧反应有相当大的影响。水浸减少了煤的比表面积,但增加了煤孔的平均直径和总孔体积。煤孔中的这些变化有利于氧气的迁移和运输。在整个低温氧化阶段,DWIC的羟基浓度比原煤的高,这使得煤和氧的初始反应更容易发生。在低温氧化后期,甲基浓度对煤-氧反应有相当大的影响。

更新日期:2021-04-27
down
wechat
bug