当前位置: X-MOL 学术Part. Fibre Toxicol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biotransformation of rare earth oxide nanoparticles eliciting microbiota imbalance
Particle and Fibre Toxicology ( IF 10 ) Pub Date : 2021-04-26 , DOI: 10.1186/s12989-021-00410-5
Huizhen Zheng 1 , Zonglin Gu 2 , Yanxia Pan 1 , Jie Chen 1 , Qianqian Xie 1 , Shujuan Xu 1 , Meng Gao 1 , Xiaoming Cai 3 , Shengtang Liu 1 , Weili Wang 1 , Wei Li 1 , Xi Liu 1 , Zaixing Yang 1 , Ruhong Zhou 1, 4 , Ruibin Li 1
Affiliation  

Disruption of microbiota balance may result in severe diseases in animals and phytotoxicity in plants. While substantial concerns have been raised on engineered nanomaterial (ENM) induced hazard effects (e.g., lung inflammation), exploration of the impacts of ENMs on microbiota balance holds great implications. This study found that rare earth oxide nanoparticles (REOs) among 19 ENMs showed severe toxicity in Gram-negative (G−) bacteria, but negligible effects in Gram-positive (G+) bacteria. This distinct cytotoxicity was disclosed to associate with the different molecular initiating events of REOs in G− and G+ strains. La2O3 as a representative REOs was demonstrated to transform into LaPO4 on G− cell membranes and induce 8.3% dephosphorylation of phospholipids. Molecular dynamics simulations revealed the dephosphorylation induced more than 2-fold increments of phospholipid diffusion constant and an unordered configuration in membranes, eliciting the increments of membrane fluidity and permeability. Notably, the ratios of G−/G+ reduced from 1.56 to 1.10 in bronchoalveolar lavage fluid from the mice with La2O3 exposure. Finally, we demonstrated that both IL-6 and neutrophil cells showed strong correlations with G−/G+ ratios, evidenced by their correlation coefficients with 0.83 and 0.92, respectively. This study deciphered the distinct toxic mechanisms of La2O3 as a representative REO in G− and G+ bacteria and disclosed that La2O3-induced membrane damages of G− cells cumulated into pulmonary microbiota imbalance exhibiting synergistic pulmonary toxicity. Overall, these findings offered new insights to understand the hazard effects induced by REOs.

中文翻译:

稀土氧化物纳米粒子的生物转化引起微生物群失衡

微生物群平衡的破坏可能导致动物的严重疾病和植物的植物毒性。虽然工程纳米材料 (ENM) 引起的危害效应(例如肺部炎症)引起了极大的关注,但探索 ENM 对微生物群平衡的影响具有重大意义。该研究发现,19 种 ENM 中的稀土氧化物纳米粒子 (REO) 对革兰氏阴性 (G-) 细菌显示出严重的毒性,但对革兰氏阳性 (G+) 细菌的影响可以忽略不计。这种独特的细胞毒性与 G- 和 G+ 菌株中 REO 的不同分子起始事件有关。La2O3 作为代表性的 REOs 被证明可以在 G-细胞膜上转化为 LaPO4 并诱导 8.3% 的磷脂去磷酸化。分子动力学模拟显示,去磷酸化导致磷脂扩散常数增加 2 倍以上,膜中的无序构型导致膜流动性和渗透性增加。值得注意的是,在暴露于 La2O3 的小鼠的支气管肺泡灌洗液中,G-/G+ 的比率从 1.56 降至 1.10。最后,我们证明 IL-6 和中性粒细胞都显示出与 G-/G+ 比率的强相关性,它们的相关系数分别为 0.83 和 0.92。该研究破译了 La2O3 作为 G− 和 G+ 细菌中代表性 REO 的独特毒性机制,并揭示了 La2O3 诱导的 G− 细胞膜损伤累积成肺微生物群失衡,表现出协同肺毒性。总体,
更新日期:2021-04-27
down
wechat
bug