当前位置: X-MOL 学术IEEE J. Solid-State Circuits › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Realization of In-Band Full-Duplex Operation at 300 and 4.2 K Using Bilateral Single-Sideband Frequency Conversion
IEEE Journal of Solid-State Circuits ( IF 5.4 ) Pub Date : 2021-03-15 , DOI: 10.1109/jssc.2021.3062079
Xiang Yi , Jinchen Wang , Marco Colangelo , Cheng Wang , Kenneth E. Kolodziej , Ruonan Han

CMOS-integrated in-band full-duplex (IBFD) operation in wireless links and cryogenic quantum platforms was previously enabled by magnetic-free circulators using the phase non-reciprocity from spatial-temporal modulation. In this article, we present an alternative and simple integrated circuit scheme, which not only realizes non-reciprocal signal flows required for IBFD operations but also improves the isolation performance by completely eliminating any chip-level transmit (TX)-to-receive (RX) coupling. The above functions are enabled by performing a direction/frequency-independent, single-sideband down-conversion to the counter-propagating TX and RX signals, which creates opposite deviations of on-chip TX and RX frequencies with respect to the antenna (ANT) frequency. Such a principle also broadens the isolation bandwidth and enables integrated receiver down-mixing function. As a proof-of-concept, a 3.4–4.6-GHz (30% fractional bandwidth) IBFD interface is implemented using a 65-nm bulk CMOS technology. The measured TX-to-RX isolation of the circuit is 32–51 dB at 300 K, and 14–29 dB at 4.2 K. The measured TX-to-ANT and ANT-to-RX insertion losses are 3.0 and 3.2 dB at 300 K, and 1.9 and 2.0 dB at 4.2 K. At 300 K, the measured TX-to-ANT and ANT-to-RX IIP3 are 29.5 and 27.6 dBm, respectively. The IBFD core of the chip occupies an area of 0.27 mm 2 and has a dc power (nominally consumed in an on-chip modulation clock generator) of 48 mW at 300 K and 42.6 mW at 4.2 K.

中文翻译:

使用双边单边带频率转换在300和4.2 K下实现带内全双工操作

无线链路和超低温量子平台中的CMOS集成带内全双工(IBFD)操作以前是由无磁环行器使用时空调制实现的相位互易性启用的。在本文中,我们提出了一种替代且简单的集成电路方案,该方案不仅可以实现IBFD操作所需的不可逆信号流,而且还可以通过完全消除任何芯片级发射(TX)-to-receive(RX)来提高隔离性能。 )耦合。通过对反向传播的TX和RX信号执行与方向/频率无关的单边带下变频,可以实现上述功能,这会导致片上TX和RX频率相对于天线(ANT)产生相反的偏差频率。这样的原理还拓宽了隔离带宽,并实现了集成的接收机缩混功能。作为概念验证,使用65nm批量CMOS技术实现了3.4–4.6 GHz(分数带宽的30%)IBFD接口。在300 K时,测得的电路TX-RX隔离度为32-51 dB,在4.2 K时为14-29 dB。测得的TX-ANT和ANT-RX插入损耗分别为3.0和3.2 dB。 300 K,在4.2 K时为1.9和2.0 dB。在300 K时,测得的TX-to-ANT和ANT-RX-IIP3分别为29.5和27.6 dBm。芯片的IBFD核心占用0.27毫米的面积 在300 K时,测得的TX至ANT和ANT至RX的插入损耗分别为3.0和3.2 dB,在4.2 K时为1.9和2.0 dB。在300 K时,测得的TX至ANT和ANT至RX的插入损耗IIP3分别为29.5和27.6 dBm。芯片的IBFD核心占用0.27毫米的面积 在300 K时,测得的TX至ANT和ANT至RX的插入损耗分别为3.0和3.2 dB,在4.2 K时为1.9和2.0 dB。在300 K时,测得的TX至ANT和ANT至RX的插入损耗IIP3分别为29.5和27.6 dBm。芯片的IBFD核心占用0.27毫米的面积 2的直流功率(在片上调制时钟发生器中标称消耗)在300 K时为48 mW,在4.2 K时为42.6 mW。
更新日期:2021-04-27
down
wechat
bug