当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum guidelines for solid-state spin defects
Nature Reviews Materials ( IF 79.8 ) Pub Date : 2021-04-26 , DOI: 10.1038/s41578-021-00306-y
Gary Wolfowicz , F. Joseph Heremans , Christopher P. Anderson , Shun Kanai , Hosung Seo , Adam Gali , Giulia Galli , David D. Awschalom

Defects with associated electron and nuclear spins in solid-state materials have a long history relevant to quantum information science that goes back to the first spin echo experiments with silicon dopants in the 1950s. Since the turn of the century, the field has rapidly spread to a vast array of defects and host crystals applicable to quantum communication, sensing and computing. From simple spin resonance to long-distance remote entanglement, the complexity of working with spin defects is fast increasing, and requires an in-depth understanding of the defects’ spin, optical, charge and material properties in this modern context. This is especially critical for discovering new relevant systems for specific quantum applications. In this Review, we expand upon all the key components of solid-state spin defects, with an emphasis on the properties of defects and of the host material, on engineering opportunities and on other pathways for improvement. This Review aims to be as defect and material agnostic as possible, with some emphasis on optical emitters, providing broad guidelines for the field of solid-state spin defects for quantum information.



中文翻译:

固态自旋缺陷的量子准则

固态材料中伴有电子和核自旋的缺陷与量子信息科学有关的历史由来已久,可追溯到1950年代首次使用硅掺杂剂进行的自旋回波实验。自本世纪初以来,该领域已迅速扩展到适用于量子通信,传感和计算的大量缺陷和基质晶体。从简单的自旋共振到长距离远距离纠缠,处理自旋缺陷的复杂性正在迅速增加,并且需要在这种现代背景下深入了解缺陷的自旋,光学,电荷和材料性质。这对于发现用于特定量子应用的新的相关系统尤为关键。在这篇评论中,我们扩展了固态自旋缺陷的所有关键组成部分,着重于缺陷和主体材料的特性,工程机会以及其他改进途径。这篇综述的目的是使缺陷和材料不可知,并重点关注光发射器,为量子信息的固态自旋缺陷领域提供广泛的指导。

更新日期:2021-04-27
down
wechat
bug