当前位置: X-MOL 学术J. Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silicon nanostructure-based photonic MEMS sensor for biosensing application
Journal of Nanophotonics ( IF 1.1 ) Pub Date : 2021-04-01 , DOI: 10.1117/1.jnp.15.026001
Anup M. Upadhyaya 1 , Maneesh C. Srivastava 1 , Preeta Sharan 2 , Sandip Kumar Roy 3
Affiliation  

We explored the design of an optical pressure sensor. The objective is to create a photonic microelectromechanical system-based cantilever sensor design to detect prostate-specific antigen, a protein biomarker associated with prostate cancer. Sensor’s performance for the early detection of cancerous cells is dependent on sensitivity. The designed sensor consists of a hexagonal ring integrated with microcantilevers. Two types of microcantilever such as rectangular profile and V profile with integrated photonic sensing layer are investigated for sensitivity, quality factor, and resonant wavelength. The analysis shows that a geometrical modification of microcantilever has a significant effect on sensitivity enhancement. The finite difference time domain tool is used for designing photonic ring resonator patches. Numerical analysis of microcantilever is considered to investigate surface stress behavior. The cantilever deformation due to applied pressure resulted in a change in the index of refraction. Results show that the sensitivity of 55 nm / MPa for a triangular-shaped microcantilever obtained is higher compared to the rectangular-shaped microcantilever with a sensitivity of 0.19 nm / MPa. The designed structures have significantly higher sensitivities than the previously published sensitivity of 3.27 nm / MPa at wavelength 1550 nm. The maximum quality factor obtained for the rectangular shape is 2852 and 77,510 for the triangular shape. Triangular-shaped microcantilever can minimize winding inflexibility or stiffness. This capability of the triangular-shaped microcantilever enhances feasibility in making the final packaging and future fabrication.

中文翻译:

基于硅纳米结构的光子MEMS传感器,用于生物传感应用

我们探索了光学压力传感器的设计。目的是创建基于光子微机电系统的悬臂传感器设计,以检测前列腺特异性抗原(一种与前列腺癌相关的蛋白质生物标记物)。早期检测癌细胞的传感器性能取决于灵敏度。设计的传感器由一个集成有微悬臂的六角环组成。研究了两种类型的微悬臂梁,例如具有集成光子传感层的矩形轮廓和V轮廓,以提高灵敏度,品质因数和谐振波长。分析表明,微悬臂梁的几何修饰对灵敏度提高具有显着影响。时域有限差分工具用于设计光子环形谐振器贴片。微悬臂梁的数值分析被认为是研究表面应力行为。由于施加压力导致的悬臂变形导致折射率变化。结果表明,与矩形微悬臂梁的灵敏度为0.19 nm / MPa相比,获得的三角形微悬臂梁的55 nm / MPa灵敏度更高。设计的结构具有比以前公布的在波长1550 nm处的灵敏度3.27 nm / MPa更高的灵敏度。矩形的最大品质因数为2852,三角形的最大品质因数为77,510。三角形微悬臂可以最大程度地减少绕组的挠性或刚度。三角形微悬臂梁的这种能力增强了最终包装和未来制造的可行性。
更新日期:2021-04-27
down
wechat
bug