当前位置: X-MOL 学术Russ. Meteorol. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monitoring the Variability of the Stratospheric Aerosol Layer over Tomsk in 2016–2018 Based on Lidar Data
Russian Meteorology and Hydrology ( IF 1.4 ) Pub Date : 2021-04-26 , DOI: 10.3103/s1068373921010064
V. N. Marichev , D. А. Bochkovskii

Abstract

The results of observations of the features of intraannual variability for the vertical structure of background aerosol in the stratosphere over Western Siberia in 2016–2018 are presented and analyzed. Experimental data were obtained at the lidar complex of Zuev Institute of Atmospheric Optics (Siberian Branch, Russian Academy of Sciences) with a receiving mirror diameter of 1 m. The objective of the study is to investigate the dynamics of background stratospheric aerosol, since during this period there were no volcanic eruptions leading to the transport of eruptive aerosol into the stratosphere. The results of the study confirm a stable intraannual cycle of maximum aerosol filling of the stratosphere in winter, a decrease in spring to the minimum, practical absence in summer, and an increase in autumn. At the same time, the variability of stratification and aerosol filling is observed for different years. It was found that aerosol is concentrated in the layer up to 30 km all year round, except for the winter period. It is shown that the vertical aerosol stratification is largely determined by the thermal regime of the troposphere–stratosphere boundary layer. The absence of a pronounced temperature inversion at the tropopause contributes to an increase in the stratosphere–troposphere exchange and, as a result, to the aerosol transport to the stratosphere. This situation is typical of the cold season. For the first time, data on the quantitative content of stratospheric aerosol (its mass concentration) were obtained from single-frequency lidar data.



中文翻译:

基于激光雷达数据监测2016–2018年托木斯克平流层气溶胶层的变化

摘要

呈现并分析了2016-2018年西西伯利亚平流层背景气溶胶垂直结构年内变化特征的观测结果。实验数据是在Zuev大气光学研究所(俄罗斯科学院西伯利亚分校)的激光雷达复合体上获得的,其接收镜直径为1 m。该研究的目的是调查背景平流层气溶胶的动力学,因为在此期间没有火山喷发导致喷发气溶胶进入平流层。研究结果证实,冬季平流层最大的气溶胶充填稳定在年内周期,春季减少到最小,夏季实际上没有,秋季增加。同时,在不同年份观察到分层和气溶胶填充的变化。据发现,除冬季外,全年的气溶胶浓度都集中在长达30 km的层中。结果表明,垂直的气溶胶分层主要由对流层-平流层边界层的热状态决定。对流层顶没有明显的温度反转,这导致平流层-对流层交换增加,结果导致气溶胶输送到平流层。这种情况是寒冷季节的典型情况。首次从单频激光雷达数据中获得了有关平流层气溶胶定量含量(质量浓度)的数据。据发现,除冬季外,全年的气溶胶浓度都集中在长达30 km的层中。结果表明,垂直的气溶胶分层主要由对流层-平流层边界层的热状态决定。对流层顶没有明显的温度反转,这导致平流层-对流层交换增加,结果导致气溶胶输送到平流层。这种情况是寒冷季节的典型情况。首次从单频激光雷达数据中获得了有关平流层气溶胶定量含量(质量浓度)的数据。据发现,除冬季外,全年的气溶胶浓度都集中在长达30 km的层中。结果表明,垂直的气溶胶分层主要由对流层-平流层边界层的热状态决定。对流层顶没有明显的温度反转,这导致平流层-对流层交换增加,结果导致气溶胶输送到平流层。这种情况是寒冷季节的典型情况。首次从单频激光雷达数据中获得了有关平流层气溶胶定量含量(质量浓度)的数据。对流层顶没有明显的温度反转,这导致平流层-对流层交换增加,结果导致气溶胶输送到平流层。这种情况是寒冷季节的典型情况。首次从单频激光雷达数据中获得了有关平流层气溶胶定量含量(质量浓度)的数据。对流层顶没有明显的温度反转,这导致平流层-对流层交换增加,结果导致气溶胶输送到平流层。这种情况是寒冷季节的典型情况。首次从单频激光雷达数据中获得了有关平流层气溶胶定量含量(质量浓度)的数据。

更新日期:2021-04-27
down
wechat
bug