当前位置: X-MOL 学术Thin-Walled Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Higher order formulations for doubly-curved shell structures with a honeycomb core
Thin-Walled Structures ( IF 5.7 ) Pub Date : 2021-04-26 , DOI: 10.1016/j.tws.2021.107789
Francesco Tornabene , Matteo Viscoti , Rossana Dimitri , Maria Antonietta Aiello

Anisotropic doubly-curved shells reinforced with a honeycomb core are innovative structures for applications in civil, biomedical, and aerospace engineering. In this context, the homogenization technique represents one of the simplest way for analyzing such complex structures. A proper formulation must be capable to give accurate results for any cell configuration and/or curved shape. In the present work an innovative model is proposed, based on an Equivalent Single Layer (ESL) approach and higher order theories, for an accurate estimation of the vibrational response of plates, panels and shells, whose results are compared with predictions from a classical Finite Element Method (FEM). The work starts with a comparative study performed on aluminum sandwich plates with hexagonal, rectangular and re-entrant cells. Then, a sensitivity analysis evaluates the dynamic response of single- and doubly-curved panels with different cell typologies. The fundamental equations are tackled numerically by resorting to the 2D Generalized Differential Quadrature (GDQ) method. The influence of the kinematic assumptions throughout the thickness on the dynamic response of shells is investigated, accounting for different Representative Volume Element (RVE) deformation effects within the homogenized model. In all the analyses, cell units are analyzed by means of different geometric angles, thin and thick cores, as well as classic and double thickness vertical walls or commercial honeycomb cores.



中文翻译:

具有蜂窝芯的双曲线壳结构的高阶配方

蜂窝芯增强的各向异性双曲线壳是创新的结构,可用于土木,生物医学和航空航天工程。在这种情况下,均质化技术代表了分析这种复杂结构的最简单方法之一。对于任何细胞配置和/或弯曲形状,正确的配方必须能够给出准确的结果。在当前工作中,基于等效单层(ESL)方法和高阶理论,提出了一种创新模型,用于精确估算板,面板和壳体的振动响应,并将其结果与经典有限元的预测结果进行了比较。元素方法(FEM)。这项工作始于对带有六角形,矩形和凹形孔的铝制夹心板进行的比较研究。然后,敏感性分析评估具有不同细胞类型的单曲和双曲面板的动态响应。基本方程可通过二维广义差分正交积分法(GDQ)进行数值求解。研究了整个厚度上的运动学假设对壳的动力响应的影响,这说明了均质化模型中不同的“代表体积元素”(RVE)变形效应。在所有分析中,均通过不同的几何角度,薄而厚的芯,经典和双层厚度的垂直壁或商用蜂窝芯对单元进行分析。基本方程可通过二维广义差分正交积分法(GDQ)进行数值求解。研究了整个厚度上的运动学假设对壳的动力响应的影响,这说明了均质化模型中不同的“代表体积元素”(RVE)变形效应。在所有分析中,均通过不同的几何角度,薄而厚的芯,经典和双层厚度的垂直壁或商用蜂窝芯对单元进行分析。基本方程可通过二维广义差分正交积分法(GDQ)进行数值求解。研究了整个厚度上的运动学假设对壳的动力响应的影响,这说明了均质化模型中不同的“代表体积元素”(RVE)变形效应。在所有分析中,均通过不同的几何角度,薄而厚的芯,经典和双层厚度的垂直壁或商用蜂窝芯对单元进行分析。

更新日期:2021-04-27
down
wechat
bug