当前位置: X-MOL 学术Int. J. Numer. Meth. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling non-isothermal two-phase fluid flow with phase change in deformable fractured porous media using extended finite element method
International Journal for Numerical Methods in Engineering ( IF 2.9 ) Pub Date : 2021-04-26 , DOI: 10.1002/nme.6709
Amir R. Khoei 1 , Danial Amini 1 , S. Mohammad S. Mortazavi 1
Affiliation  

In this article, a computational model is presented for the analysis of coupled thermo-hydro-mechanical process with phase change (evaporation/condensation) in fractured porous media in order to model multiphase fluid flows, heat transfer, and discontinuous deformation by employing the extended finite element method. The ideal gas law and Dalton's law are employed to consider vapor and dry air as miscible gases. To take into account the phase change, latent heat and specific vapor enthalpy are incorporated into the physical model. The set of governing equations consists of linear momentum for the solid-phase, energy balance equation and mass conservation equations of water species (liquid and vapor) and dry air, which are derived within the framework of the generalized Biot's theory. The weak forms are presented in terms of the displacement, water pressure, capillary pressure, and temperature as the primary variables. The spatial and temporal discretizations are carried out applying the extended finite element method and the generalized Newmark scheme, respectively, resulting in the final system of fully coupled nonlinear equations. Finally, several numerical examples are solved to demonstrate not only the robustness of the proposed computational model but also the effect of the crack orientation, intrinsic permeability, and elastic modulus on the fluid flow patterns, relative humidity, and temperature distribution. Moreover, an edge-crack propagation is investigated under mode I fracture due to drying conditions.

中文翻译:

使用扩展有限元方法模拟可变形裂缝多孔介质中具有相变的非等温两相流体流动

在本文中,提出了一个计算模型,用于分析裂隙多孔介质中具有相变(蒸发/冷凝)的热-水-机械耦合过程,以便通过采用扩展模型来模拟多相流体流动、传热和不连续变形。有限元法。理想气体定律和道尔顿定律用于将蒸汽和干燥空气视为可混溶气体。为了考虑相变,潜热和比蒸气焓被纳入物理模型。控制方程组由固相的线性动量、能量平衡方程和水物质(液体和蒸汽)和干燥空气的质量守恒方程组成,这些方程是在广义比奥理论的框架内推导出来的。弱形式以位移、水压、毛细管压力和温度为主要变量。分别应用扩展的有限元方法和广义的 Newmark 方案进行空间和时间离散化,从而产生完全耦合非线性方程的最终系统。最后,解决了几个数值例子,不仅证明了所提出的计算模型的稳健性,而且证明了裂缝方向、固有渗透率和弹性模量对流体流动模式、相对湿度和温度分布的影响。此外,由于干燥条件,在模式 I 断裂下研究了边缘裂纹扩展。分别应用扩展的有限元方法和广义的 Newmark 方案进行空间和时间离散化,从而产生完全耦合的非线性方程的最终系统。最后,解决了几个数值例子,不仅证明了所提出的计算模型的稳健性,而且证明了裂缝方向、固有渗透率和弹性模量对流体流动模式、相对湿度和温度分布的影响。此外,由于干燥条件,在模式 I 断裂下研究了边缘裂纹扩展。分别应用扩展的有限元方法和广义的 Newmark 方案进行空间和时间离散化,从而产生完全耦合的非线性方程的最终系统。最后,解决了几个数值例子,不仅证明了所提出的计算模型的稳健性,而且证明了裂缝方向、固有渗透率和弹性模量对流体流动模式、相对湿度和温度分布的影响。此外,由于干燥条件,在模式 I 断裂下研究了边缘裂纹扩展。解决了几个数值例子,不仅证明了所提出的计算模型的稳健性,而且证明了裂缝方向、固有渗透率和弹性模量对流体流动模式、相对湿度和温度分布的影响。此外,由于干燥条件,在模式 I 断裂下研究了边缘裂纹扩展。解决了几个数值例子,不仅证明了所提出的计算模型的稳健性,而且证明了裂缝方向、固有渗透率和弹性模量对流体流动模式、相对湿度和温度分布的影响。此外,由于干燥条件,在模式 I 断裂下研究了边缘裂纹扩展。
更新日期:2021-04-26
down
wechat
bug