当前位置: X-MOL 学术Rheol. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The microstructural change causing the failure of the Cox-Merz rule in Newtonian suspensions: experiments and simulations
Rheologica Acta ( IF 2.3 ) Pub Date : 2021-04-25 , DOI: 10.1007/s00397-021-01270-8
Claudia Carotenuto , Genta Rexha , Raffaella Martone , Mario Minale

Newtonian non-Brownian concentrated suspensions show a mismatch between the steady state and the complex viscosity, whatever the strain amplitude imposed in the oscillatory flow. This result is counterintuitive in the two extreme cases of vanishing strain amplitude and very large one. In the first case, the oscillatory flow should not be able to alter the steady microstructure, as well as in the other opposite limit for which the strain amplitude is so high that the oscillatory flow resembles a steady flow reversal. If the microstructure is not altered with respect to the steady one, similarly the complex viscosity should be equal to the steady one. We here investigate experimentally and numerically the origin of the viscosities mismatch at any imposed strain amplitude. We focus on the first two or three cycles of oscillations and different particle concentrations. Experimental and numerical results agree and allow to prove that for intermediate amplitudes, the oscillatory shear induces the breakage of particle clusters and the microstructure modifies so to minimise particle collisions. For very small strain amplitudes, the oscillatory shear only induces the rotation of few couples of touching particles and the complex viscosity results slightly smaller than the steady one, while for very large strains, the oscillatory flow reshuffles the particles inducing a microstructure as clustered as the steady state one but with a different angular distribution function. We show that the vast majority of the microstructure rearrangement takes place in the first half cycle of oscillation.



中文翻译:

导致牛顿悬浮液中Cox-Merz规则失效的微观结构变化:实验和模拟

牛顿非布朗浓缩悬浮液在稳态和复数粘度之间不匹配,无论在振荡流中施加的应变幅度如何。在应变幅度消失且非常大的两种极端情况下,此结果是违反直觉的。在第一种情况下,振荡流应该不能改变稳定的微观结构,并且在另一个相反的极限中,应变幅度是如此之高,以至于振荡流类似于稳定的流动反向。如果微观结构相对于稳定结构没有变化,同样,复数粘度应等于稳定结构。我们在这里通过实验和数值研究在任何施加的应变幅度下粘度不匹配的起源。我们专注于振荡的前两个或三个周期和不同的粒子浓度。实验和数值结果相吻合,并可以证明在中等振幅下,振荡剪切引起粒子簇的破裂,并且微观结构发生了变化,从而使粒子碰撞最小化。对于非常小的应变幅度,振荡剪切只会引起几对接触颗粒的旋转,并且复数粘度结果会比稳定的稍小,而对于非常大的应变,振荡流会重新排列颗粒,从而导致微观结构聚类。稳态,但具有不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。实验和数值结果相吻合,并允许证明在中等振幅下,振荡剪切引起粒子簇的破裂,并且微观结构发生了变化,从而使粒子碰撞最小化。对于非常小的应变幅度,振荡剪切只会引起几对接触颗粒的旋转,并且复数粘度结果会比稳定的稍小,而对于非常大的应变,振荡流会重新排列颗粒,从而导致微观结构聚类。稳态,但具有不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。实验和数值结果相吻合,并允许证明在中等振幅下,振荡剪切引起粒子簇的破裂,并且微观结构发生了变化,从而使粒子碰撞最小化。对于非常小的应变幅度,振荡剪切只会引起几对接触颗粒的旋转,并且复数粘度结果会比稳定的稍小,而对于非常大的应变,振荡流会重新排列颗粒,从而导致微观结构聚类。稳态,但具有不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。振荡剪切引起粒子团的破裂,并且微观结构发生了改变,从而使粒子碰撞最小化。对于非常小的应变幅度,振荡剪切只会引起几对接触颗粒的旋转,并且复数粘度结果会比稳定的稍小,而对于非常大的应变,振荡流会重新排列颗粒,从而导致微观结构聚类。稳态,但具有不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。振荡剪切引起粒子团的破裂,并且微观结构发生了改变,从而使粒子碰撞最小化。对于非常小的应变振幅,振荡剪切只会引起几对接触颗粒的旋转,并且复数粘度结果会比稳定的稍小,而对于非常大的应变,振荡流会重新排列颗粒,从而导致微观结构聚类。稳态,但具有不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。振荡剪切仅引起几对接触颗粒的旋转,并且复数粘度结果略小于稳定颗粒,而对于非常大的应变,振荡流会重新排列颗粒,从而诱导微观结构像稳态颗粒一样聚簇,但具有一个不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。振荡剪切仅引起几对接触颗粒的旋转,并且复数粘度结果略小于稳定颗粒,而对于非常大的应变,振荡流会重新排列颗粒,从而诱导微观结构像稳态颗粒一样聚簇,但具有一个不同的角度分布函数。我们表明,绝大多数的微观结构重排发生在振荡的前半个周期。

更新日期:2021-04-26
down
wechat
bug