当前位置: X-MOL 学术Quantum Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimentally optimizing QKD rates via nonlocal dispersion compensation
Quantum Science and Technology ( IF 5.6 ) Pub Date : 2021-03-26 , DOI: 10.1088/2058-9565/abe5ee
Sebastian Philipp Neumann 1, 2 , Domenico Ribezzo 1, 2 , Martin Bohmann 1, 2 , Rupert Ursin 1, 2
Affiliation  

Quantum key distribution (QKD) enables unconditionally secure communication guaranteed by the laws of physics. The last decades have seen tremendous efforts in making this technology feasible under real-life conditions, with implementations bridging ever longer distances and creating ever higher secure key rates. Readily deployed glass fiber connections are a natural choice for distributing the single photons necessary for QKD both in intra- and intercity links. Any fiber-based implementation however experiences chromatic dispersion which deteriorates temporal detection precision. This ultimately limits maximum distance and achievable key rate of such QKD systems. In this work, we address this limitation to both maximum distance and key rate and present an effective and easy-to-implement method to overcome chromatic dispersion effects. By exploiting entangled photons’ frequency correlations, we make use of nonlocal dispersion compensation to improve the photons’ temporal correlations. Our experiment is the first implementation utilizing the inherently quantum-mechanical effect of nonlocal dispersion compensation for QKD in this way. We experimentally show an increase in key rate from 6.1 to 228.3 bits/s over 6.46 km of telecom fiber. Our approach is extendable to arbitrary fiber lengths and dispersion values, resulting in substantially increased key rates and even enabling QKD in the first place where strong dispersion would otherwise frustrate key extraction at all.



中文翻译:

通过非局部色散补偿实验优化 QKD 速率

量子密钥分发 (QKD) 可实现由物理定律保证的无条件安全通信。在过去的几十年里,人们付出了巨大的努力使这项技术在现实生活条件下可行,实现跨越了更远的距离并创造了更高的安全密钥率。易于部署的玻璃光纤连接是在城内和城际链路中分配 QKD 所需的单光子的自然选择。然而,任何基于光纤的实现都会经历色散,这会降低时间检测精度。这最终限制了此类 QKD 系统的最大距离和可实现的关键速率。在这项工作中,我们解决了最大距离和关键速率的限制,并提出了一种有效且易于实施的方法来克服色散效应。通过利用纠缠光子的频率相关性,我们利用非局部色散补偿来改善光子的时间相关性。我们的实验是第一次以这种方式利用非局域色散补偿的固有量子力学效应来实现 QKD。我们通过实验表明,在 6.46 公里的电信光纤上,密钥速率从 6.1 比特/秒增加到 228.3 比特/秒。我们的方法可扩展到任意光纤长度和色散值,从而显着提高密钥速率,甚至在第一时间启用 QKD,否则强色散将完全阻碍密钥提取。我们的实验是第一次以这种方式利用非局域色散补偿的固有量子力学效应来实现 QKD。我们通过实验表明,在 6.46 公里的电信光纤上,密钥速率从 6.1 比特/秒增加到 228.3 比特/秒。我们的方法可扩展到任意光纤长度和色散值,从而显着提高密钥速率,甚至在第一时间启用 QKD,否则强色散将完全阻碍密钥提取。我们的实验是第一次以这种方式利用非局域色散补偿的固有量子力学效应来实现 QKD。我们通过实验表明,在 6.46 公里的电信光纤上,密钥速率从 6.1 比特/秒增加到 228.3 比特/秒。我们的方法可扩展到任意光纤长度和色散值,从而显着提高密钥速率,甚至在第一时间启用 QKD,否则强色散将完全阻碍密钥提取。

更新日期:2021-03-26
down
wechat
bug