当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target
Plasma Sources Science and Technology ( IF 3.3 ) Pub Date : 2021-04-01 , DOI: 10.1088/1361-6595/abe9f9
Bocong Zheng 1 , Yangyang Fu 2, 3 , Keliang Wang 1 , Thomas Schuelke 1, 3 , Qi Hua Fan 1, 3, 4
Affiliation  

We demonstrate a self-consistent and complete description of electron dynamics in a typical electropositive radio frequency magnetron sputtering (RFMS) argon discharge with a dielectric target. The electron dynamics, including the electron power absorption dynamics in one radio frequency (RF) period, is studied via a fully kinetic 2d3v particle-in-cell/Monte Carlo collision (PIC/MCC) electrostatic simulation. The interplay between the fundamental plasma parameters is analyzed through their spatiotemporal dynamics. Due to the influence of magnetic trap on the electron transport, a spatially dependent charging that perturbs the electric potential is observed on the dielectric target surface, resulting in a spatially dependent ion energy distribution along the target surface. The E B drift-to-discharge current ratio is in approximate agreement with Bohm diffusion. The electron power absorption can be primarily decoupled into the positive Ohmic power absorption in the bulk plasma region and the negative pressure-induced power absorption near the target surface. Ohmic power absorption is the dominant electron power absorption mechanism, mostly contributed by the azimuthal electron current. The power absorption due to electron inertial effects is negligible on time-average. Both the maximum power absorption and dissipation of electrons appear in the bulk plasma region during the second half of the RF period, implying a strong electron trapping in magnetron discharges. The contribution of secondary electrons is negligible under typical RFMS discharge conditions.



中文翻译:

射频磁控溅射氩气放电与介电靶中的电子动力学

我们在典型的正电射频磁控溅射 (RFMS) 氩气放电与介电靶标中展示了对电子动力学的自洽和完整描述。电子动力学,包括一个射频 (RF) 周期中的电子功率吸收动力学,通过完全动力学的 2d3v 细胞内粒子/蒙特卡罗碰撞 (PIC/MCC) 静电模拟进行研究。通过它们的时空动态分析基本等离子体参数之间的相互作用。由于磁阱对电子传输的影响,在介电目标表面上观察到扰动电势的空间相关电荷,导致沿目标表面的空间相关离子能量分布。该Ë 漂移放电电流比与玻姆扩散近似一致。电子功率吸收可以主要解耦为体等离子体区域中的正欧姆功率吸收和目标表面附近的负压引起的功率吸收。欧姆功率吸收是主要的电子功率吸收机制,主要由方位角电子电流贡献。由于电子惯性效应引起的功率吸收在时间平均上可以忽略不计。在 RF 周期的后半段,体等离子体区域中出现电子的最大功率吸收和耗散,这意味着在磁控管放电中存在强电子俘获。在典型的 RFMS 放电条件下,二次电子的贡献可以忽略不计。

更新日期:2021-04-01
down
wechat
bug