当前位置: X-MOL 学术Nano Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent progress and applications of gold nanotechnology in medical biophysics using artificial intelligence and mathematical modeling
Nano Express ( IF 2.7 ) Pub Date : 2021-04-07 , DOI: 10.1088/2632-959x/abddd3
Julia A Moore 1 , James C L Chow 2, 3
Affiliation  

In this topical review, we will explore and challenge how artificial intelligence (AI) and mathematical modeling apply towards the future in medical applications, focusing on their interactions with gold nanotechnology. There have been rapid advancements towards the applications of AI and mathematical modeling in medical biophysics. These specific techniques help to improve studies related to nanoscale technology. Many works have been published in relation to this topic; it is now time to collectively analyze and review them to assess the contributions these applications made within nanotechnology. Through this review, both theoretical and clinical data is examined for a fresh and present-day understanding. Observations of set parameters and defined equations through AI and mathematical modeling are made to help give explanation towards variable interaction. This review focuses on gold nanoparticle synthesis and preparation via the Turkevich and Brust and Schiffrins one-pot method. From this, findings show that gold nanoparticle size, shape, and overall functionality affect its synthetic properties. Depending on the characteristics within the gold nanoparticle, its ability to maximize light absorbency, wavelengths, and optical densities within the particle is limited. Finding an ideal wavelength (dependent on nanoparticle sizing) allows for higher absorbency of light within the nanoparticle itself. Examining the cellular uptake and cytotoxicity within the nanoparticle is done so via transmission electron microscope (TEM) and Fourier transform infrared radiation (FT-IR) spectroscopy. By manipulating AI and stochastic and diagnostic models, nanoparticle efficiency within precision cancer therapy is set to ensure maximal treatment. Set conditions allow ideal tumor treatment planning, where manipulated nano-probes are used in gold nanoparticle-based therapy. Versatility in nanoparticle sensors allow for multimodal imaging and assistance towards further diagnostic and therapeutic imaging practices. Drawn conclusions will help expand further knowledge and growth for future gold nanoparticle technology research in medical biophysics application using AI and mathematical modeling.



中文翻译:

基于人工智能和数学建模的金纳米技术在医学生物物理学中的最新进展和应用

在这篇专题评论中,我们将探索和挑战人工智能 (AI) 和数学建模如何应用于未来的医疗应用,重点是它们与金纳米技术的相互作用。人工智能和数学建模在医学生物物理学中的应用取得了快速进展。这些特定技术有助于改进与纳米技术相关的研究。已经发表了许多与该主题相关的著作;现在是集体分析和审查它们以评估这些应用在纳米技术中的贡献的时候了。通过这次审查,对理论和临床数据进行了检查,以获得新的和现代的理解。通过人工智能和数学建模观察设定参数和定义的方程,以帮助解释变量相互作用。本综述侧重于通过 Turkevich 和 Brust 和 Schiffrins 一锅法合成和制备金纳米颗粒。由此,研究结果表明金纳米颗粒的大小、形状和整体功能会影响其合成特性。根据金纳米颗粒内的特性,其最大限度地提高颗粒内的光吸收率、波长和光密度的能力是有限的。找到理想的波长(取决于纳米颗粒尺寸)可以提高纳米颗粒本身内的光吸收率。通过透射电子显微镜 (TEM) 和傅里叶变换红外辐射 (FT-IR) 光谱检查纳米颗粒内的细胞摄取和细胞毒性。通过操纵人工智能和随机和诊断模型,精确癌症治疗中的纳米粒子效率将确保最大程度的治疗。设定条件允许理想的肿瘤治疗计划,其中操纵的纳米探针用于基于金纳米粒子的治疗。纳米颗粒传感器的多功能性允许进行多模态成像,并有助于进一步诊断和治疗成像实践。得出的结论将有助于使用人工智能和数学建模为未来在医学生物物理学应用中的金纳米粒子技术研究扩展进一步的知识和增长。通过操纵人工智能和随机和诊断模型,精确癌症治疗中的纳米粒子效率将确保最大程度的治疗。设定条件允许理想的肿瘤治疗计划,其中操纵的纳米探针用于基于金纳米粒子的治疗。纳米颗粒传感器的多功能性允许进行多模态成像,并有助于进一步诊断和治疗成像实践。得出的结论将有助于使用人工智能和数学建模为未来金纳米粒子技术在医学生物物理学应用中的研究进一步扩展知识和增长。通过操纵人工智能和随机和诊断模型,精确癌症治疗中的纳米粒子效率将确保最大程度的治疗。设定条件允许理想的肿瘤治疗计划,其中操纵的纳米探针用于基于金纳米粒子的治疗。纳米颗粒传感器的多功能性允许进行多模态成像,并有助于进一步诊断和治疗成像实践。得出的结论将有助于使用人工智能和数学建模为未来金纳米粒子技术在医学生物物理学应用中的研究进一步扩展知识和增长。纳米颗粒传感器的多功能性允许进行多模态成像并有助于进一步的诊断和治疗成像实践。得出的结论将有助于使用人工智能和数学建模为未来在医学生物物理学应用中的金纳米粒子技术研究扩展进一步的知识和增长。纳米颗粒传感器的多功能性允许进行多模态成像,并有助于进一步诊断和治疗成像实践。得出的结论将有助于使用人工智能和数学建模为未来金纳米粒子技术在医学生物物理学应用中的研究进一步扩展知识和增长。

更新日期:2021-04-07
down
wechat
bug