当前位置: X-MOL 学术3D Print. Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production and Characterization of Poly (Lactic Acid)/Nanostructured Carboapatite for 3D Printing of Bioactive Scaffolds for Bone Tissue Engineering
3D Printing and Additive Manufacturing ( IF 2.3 ) Pub Date : 2021-08-04 , DOI: 10.1089/3dp.2020.0211
Thiago Nunes Palhares 1, 2 , Lívia Rodrigues de Menezes 1 , Gabriela Soares Kronemberger 3, 4, 5 , Priscila Grion de Miranda Borchio 3 , Leandra Santos Baptista 3, 4, 5 , Leonardo da Cunha Boldrini Pereira 3, 5 , Emerson Oliveira da Silva 1
Affiliation  

Biocompatible scaffolds are porous matrices that are bone substitutes with great potential in tissue regeneration. For this, these scaffolds need to have bioactivity and biodegradability. From this perspective, 3D printing presents itself as one of the techniques with the greatest potential for scaffold manufacturing with porosity and established structure, based on 3D digital modeling. Thus, the objective of the present work was to produce 3D scaffolds from the poly (lactic acid) (PLA) and the nanostructured hydroxyapatite doped with carbonate ions (CHA). For this purpose, filaments were produced via fusion for the fused-filament 3D printing and used to produce scaffolds with 50% porosity in the cubic shape and 0/90°configuration. The dispersive energy spectroscopy and Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the presence of CHA in the polymeric matrix, confirming the presence and incorporation into the composite. The thermogravimetric analysis made it possible to determine that the filler concentration incorporated in the matrix was very similar to the proposed percentage, indicating that there were no major losses in the process of obtaining the filaments. It can be assumed that the influence of CHA as a filler presents better mechanical properties up to a certain amount. The biological results point to a great potential for the application of PLA/CHA scaffolds in bone tissue engineering with effective cell adhesion, proliferation, biocompatibility, and no cytotoxicity effects.

中文翻译:

用于骨组织工程生物活性支架 3D 打印的聚(乳酸)/纳米结构碳磷灰石的生产和表征

生物相容性支架是多孔基质,是在组织再生方面具有巨大潜力的骨替代物。为此,这些支架需要具有生物活性和生物降解性。从这个角度来看,3D 打印是基于 3D 数字建模的具有孔隙率和已建立结构的支架制造的最大潜力技术之一。因此,本工作的目标是从聚乳酸 (PLA) 和掺有碳酸根离子 (CHA) 的纳米结构羟基磷灰石生产 3D 支架。为此,通过熔丝 3D 打印融合生产长丝,并用于生产具有 50% 孔隙率的立方体和 0/90° 配置的支架。色散能谱和傅里叶变换红外光谱 (FTIR) 分析证明了聚合物基质中存在 CHA,从而证实了 CHA 的存在和并入复合材料中。热重分析可以确定基质中的填料浓度与建议的百分比非常相似,表明在获得长丝的过程中没有重大损失。可以假设,CHA 作为填料的影响在达到一定量时呈现出更好的机械性能。生物学结果表明 PLA/CHA 支架在骨组织工程中的应用具有巨大的潜力,具有有效的细胞粘附、增殖、生物相容性和无细胞毒性作用。确认复合材料的存在和并入。热重分析可以确定基质中的填料浓度与建议的百分比非常相似,表明在获得长丝的过程中没有重大损失。可以假设,CHA 作为填料的影响在达到一定量时呈现出更好的机械性能。生物学结果表明 PLA/CHA 支架在骨组织工程中的应用具有巨大的潜力,具有有效的细胞粘附、增殖、生物相容性和无细胞毒性作用。确认复合材料的存在和并入。热重分析可以确定基质中的填料浓度与建议的百分比非常相似,表明在获得长丝的过程中没有重大损失。可以假设,CHA 作为填料的影响在达到一定量时呈现出更好的机械性能。生物学结果表明 PLA/CHA 支架在骨组织工程中的应用具有巨大的潜力,具有有效的细胞粘附、增殖、生物相容性和无细胞毒性作用。表明在获得灯丝的过程中没有大的损失。可以假设,CHA 作为填料的影响在达到一定量时呈现出更好的机械性能。生物学结果表明 PLA/CHA 支架在骨组织工程中的应用具有巨大的潜力,具有有效的细胞粘附、增殖、生物相容性和无细胞毒性作用。表明在获得灯丝的过程中没有大的损失。可以假设,CHA 作为填料的影响在达到一定量时呈现出更好的机械性能。生物学结果表明 PLA/CHA 支架在骨组织工程中的应用具有巨大的潜力,具有有效的细胞粘附、增殖、生物相容性和无细胞毒性作用。
更新日期:2021-08-05
down
wechat
bug