当前位置: X-MOL 学术Sustain. Energy Grids Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast parallel Newton–Raphson power flow solver for large number of system calculations with CPU and GPU
Sustainable Energy Grids & Networks ( IF 5.4 ) Pub Date : 2021-04-24 , DOI: 10.1016/j.segan.2021.100483
Zhenqi Wang , Sebastian Wende-von Berg , Martin Braun

To analyze large sets of grid states, e.g. when evaluating the impact from the uncertainties of the renewable generation with probabilistic Monte Carlo simulation or in stationary time series simulation, large number of power flow calculations have to be performed. For the application in real-time grid operation, grid planning and in further cases when computational time is critical, a novel approach on simultaneous parallelization of many Newton–Raphson power flow calculations on CPU and with GPU-acceleration is proposed. The result shows a speed-up of over x100 comparing to the open-source tool pandapower, when performing repetitive power flows of system with admittance matrix of the same sparsity pattern on both CPU and GPU. The speed-up relies on the algorithm improvement and highly optimized parallelization strategy, which can reduce the repetitive work and saturate the high hardware computational capability of modern CPUs and GPUs well. This is achieved with the proposed batched sparse matrix operation and batched linear solver based on LU-refactorization. The batched linear solver shows a large performance improvement comparing to the state-of-the-art linear system solver KLU library and a better saturation of the GPU performance with small problem scale. Finally, the method of integrating the proposed solver into pandapower is presented, thus the parallel power flow solver with outstanding performance can be easily applied in challenging real-life grid operation and innovative researches e.g. data-driven machine learning studies.



中文翻译:

快速并行Newton–Raphson功率流求解器,用于使用CPU和GPU进行大量系统计算

为了分析大量的电网状态,例如,当使用概率蒙特卡罗模拟或固定时间序列模拟评估可再生能源发电的不确定性带来的影响时,必须执行大量潮流计算。为了在实时电网运行,电网计划以及在计算时间至关重要的情况下的应用,提出了一种在CPU上同时并行化许多Newton-Raphson潮流计算和GPU加速的新颖方法。结果显示,当在CPU和GPU上执行具有相同稀疏模式的导纳矩阵的系统的重复功率流时,与开放源代码工具pandapower相比,速度提高了100倍以上。提速取决于算法的改进和高度优化的并行化策略,这样可以减少重复工作,并充分满足现代CPU和GPU的高硬件计算能力。这是通过提出的基于LU重构的批处理稀疏矩阵运算和批处理线性求解器实现的。与最新的线性系统求解器KLU库相比,批处理线性求解器显示出较大的性能改进,并且在问题规模较小的情况下,GPU性能具有更好的饱和度。最后,提出了将拟议的求解器集成到pandapower中的方法,从而可以将具有出色性能的并行潮流求解器轻松应用于具有挑战性的现实电网运行和创新性研究,例如数据驱动的机器学习研究。这是通过提出的基于LU重构的批处理稀疏矩阵运算和批处理线性求解器实现的。与最新的线性系统求解器KLU库相比,批处理线性求解器显示出较大的性能改进,并且在问题规模较小的情况下,GPU性能具有更好的饱和度。最后,提出了将拟议的求解器集成到pandapower中的方法,从而可以将具有出色性能的并行潮流求解器轻松应用于具有挑战性的现实电网运行和创新性研究,例如数据驱动的机器学习研究。这是通过提出的基于LU重构的批处理稀疏矩阵运算和批处理线性求解器实现的。与最新的线性系统求解器KLU库相比,批处理线性求解器显示出较大的性能改进,并且在问题规模较小的情况下,GPU性能具有更好的饱和度。最后,提出了将拟议的求解器集成到pandapower中的方法,从而可以将具有出色性能的并行潮流求解器轻松应用于具有挑战性的现实电网运行和创新性研究,例如数据驱动的机器学习研究。与最新的线性系统求解器KLU库相比,批处理线性求解器显示出较大的性能改进,并且在问题规模较小的情况下,GPU性能具有更好的饱和度。最后,提出了将拟议的求解器集成到pandapower中的方法,从而可以将具有出色性能的并行潮流求解器轻松应用于具有挑战性的现实电网运行和创新性研究,例如数据驱动的机器学习研究。与最新的线性系统求解器KLU库相比,批处理线性求解器显示出较大的性能改进,并且在问题规模较小的情况下,GPU性能具有更好的饱和度。最后,提出了将拟议的求解器集成到pandapower中的方法,从而可以将具有出色性能的并行潮流求解器轻松应用于具有挑战性的现实电网运行和创新性研究,例如数据驱动的机器学习研究。

更新日期:2021-04-30
down
wechat
bug