当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An immersed boundary fluid–structure interaction method for thin, highly compliant shell structures
Journal of Computational Physics ( IF 3.8 ) Pub Date : 2021-04-24 , DOI: 10.1016/j.jcp.2021.110369
Jonathan Boustani , Michael F. Barad , Cetin C. Kiris , Christoph Brehm

A parallel computational method for simulating fluid–structure interaction problems involving large, geometrically nonlinear deformations of thin shell structures is presented and validated. A compressible Navier-Stokes solver utilizing a higher-order finite difference immersed boundary method is coupled with a geometrically nonlinear computational structural dynamics solver employing the mixed interpolation of tensorial components formulation for thin triangular shell elements. A weak fluid–structure coupling strategy is used to advance the numerical solution in time. The thin shell structures are represented in the fluid domain by a geometry mesh with a finite thickness at or below the size of the local grid spacing in the fluid domain. The methodologies for load and displacement transfer between the disparate geometry and structural meshes are detailed considering a parallel computing environment. The coupled method is validated for canonical simulation-based test cases and experimental fluid–structure interaction problems considering large deformations of thin shell structures, including a shock impinging on a cantilever plate, a fixed cylinder with a flexible trailing filament in channel flow, a thin, clamped plate in wall-bounded flow, and a flag waving in viscous crossflow. The FSI method is then demonstrated on a compliant circular sheet with a clamped center exposed to crossflow and finally applied to the inflation of a spacecraft disk-gap-band parachute inflating in supersonic flow conditions resembling the upper Martian atmosphere, where comparison with experimental data is provided.



中文翻译:

沉浸边界流体-结构相互作用方法,用于薄的,高度顺应的壳体结构

提出并验证了一种并行计算方法,用于模拟涉及薄壳结构的大几何非线性变形的流固耦合问题。利用高阶有限差分沉浸边界方法的可压缩Navier-Stokes求解器与几何非线性计算结构动力学求解器结合,该方法使用张量分量公式的混合插值来处理薄三角壳单元。薄弱的流固耦合策略用于及时求解数值解。薄壳结构在流体域中由几何网格表示,该几何网格的有限厚度等于或小于流体域中局部网格间距的大小。考虑到并行计算环境,详细介绍了不同几何体和结构网格之间的荷载和位移传递方法。考虑到薄壳结构的大变形(包括撞击在悬臂板上的冲击,在通道流中具有柔性尾纤的固定圆柱,薄壁)的变形,耦合方法已针对基于规范模拟的测试案例和实验性流固耦合问题进行了验证。 ,夹板在壁流中流动,并且旗帜在粘性横流中挥舞。FSI方法随后在顺从的圆形薄板上展示,其夹紧中心暴露在横流中,并最终应用于在类似于火星上层大气的超音速流动条件下对航天器盘隙带降落伞进行充气,

更新日期:2021-04-24
down
wechat
bug