当前位置: X-MOL 学术Inter. J. Metalcast. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wireless Ventilation Measurement in 3D Printed Sand Molds
International Journal of Metalcasting ( IF 2.6 ) Pub Date : 2021-04-23 , DOI: 10.1007/s40962-021-00592-w
Brian Vuksanovich , Callan Herberger , Dean Jaric , Timothy Daugherty , Mike Clancy , Stephanie Gaffney , Rich Lonardo , Richard Huff , Jason Walker , Pedro Cortes , Sairam Ravi , Jerry Thiel , Eric MacDonald

Additive Manufacturing is enabling the casting of complex geometries directly from digital design data, including 3D-scanned and reverse-engineered structures and even functionally graded lattices. By ink jetting binder into a bed of sand layer-by-layer, dimensionally precise sand molds and cores can be printed to serve as soft tooling for sand casting. However, the related increase in geometry complexity can lead to challenges in ensuring casting quality and yield. One recently explored remedy is to introduce sensors (the Internet of Things) to enable the collection of a diversity of data at difficult-to-access locations in molds in order to measure temperature, pressure, moisture, and core shift. This effort has explored measuring barometric pressure at strategic locations to evaluate the ventilation design of internal cores. Optimized and measurable ventilation can be leveraged to improve the quality of castings by reducing porosity and improving surface finish. By measuring the pressures that accumulate within cores due to binder decomposition, new ventilation designs and strategies—enabled with complex, 3D printed fluidic channels—can be explored. In this work, two castings with different metal temperatures were poured and internal pressures were measured and compared to simulations demonstrating that wireless disposable sensors can be used to measure pressure and that the measured pressure correlated with venting strategies now possible with 3D printed sand cores.



中文翻译:

3D打印砂模中的无线通风测量

增材制造技术可以直接从数字设计数据中铸造复杂的几何图形,包括3D扫描和反向工程的结构,甚至是功能渐变的晶格。通过将粘合剂逐层喷墨到砂床上,可以印刷尺寸精确的砂模和型芯,以用作铸造砂的软工具。然而,几何形状复杂性的相关增加会导致在确保铸件质量和成品率方面的挑战。最近探索的一种补救方法是引入传感器(物联网),以在模具中难以访问的位置收集各种数据,从而测量温度,压力,湿度和芯偏移。这项工作已经探索了在关键位置测量大气压力以评估内芯的通风设计。通过减少孔隙率和改善表面光洁度,可以利用优化且可测量的通风来改善铸件质量。通过测量由于粘合剂分解而在芯内累积的压力,可以探索新的通风设计和策略,并启用复杂的3D打印流体通道。在这项工作中,浇铸了两个具有不同金属温度的铸件,并测量了内部压力,并将其与模拟进行了比较,这表明可以使用无线一次性传感器来测量压力,并且所测得的压力与现在的3D打印砂芯通风策略相关。可以探索具有复杂的3D打印流体通道的新通风设计和策略。在这项工作中,浇铸了两个具有不同金属温度的铸件,并测量了内部压力,并将其与模拟进行了比较,这表明可以使用无线一次性传感器来测量压力,并且所测得的压力与现在的3D打印砂芯通风策略相关。可以探索具有复杂的3D打印流体通道的新通风设计和策略。在这项工作中,浇铸了两个具有不同金属温度的铸件,并测量了内部压力,并将其与模拟进行了比较,这表明可以使用无线一次性传感器来测量压力,并且所测得的压力与现在的3D打印砂芯通风策略相关。

更新日期:2021-04-23
down
wechat
bug