当前位置: X-MOL 学术J. Plant Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling indicates degradation of mRNA and protein as a potential regulation mechanisms during cold acclimation
Journal of Plant Research ( IF 2.7 ) Pub Date : 2021-04-23 , DOI: 10.1007/s10265-021-01294-4
Maria Krantz 1 , Julia Legen 2 , Yang Gao 3 , Reimo Zoschke 3 , Christian Schmitz-Linneweber 2 , Edda Klipp 1
Affiliation  

Plants are constantly exposed to temperature fluctuations, which have direct effects on all cellular reactions because temperature influences reaction likelihood and speed. Chloroplasts are crucial to temperature acclimation responses of plants, due to their photosynthetic reactions whose products play a central role in plant metabolism. Consequently, chloroplasts serve as sensors of temperature changes and are simultaneously major targets of temperature acclimation. The core subunits of the complexes involved in the light reactions of photosynthesis are encoded in the chloroplast. As a result, it is assumed that temperature acclimation in plants requires regulatory responses in chloroplast gene expression and protein turnover. We conducted western blot experiments to assess changes in the accumulation of two photosynthetic complexes (PSII, and Cytb6f complex) and the ATP synthase in tobacco plants over two days of acclimation to low temperature. Surprisingly, the concentration of proteins within the chloroplast varied negligibly compared to controls. To explain this observation, we used a simplified Ordinary Differential Equation (ODE) model of transcription, translation, mRNA degradation and protein degradation to explain how the protein concentration can be kept constant. This model takes into account temperature effects on these processes. Through simulations of the ODE model, we show that mRNA and protein degradation are possible targets for control during temperature acclimation. Our model provides a basis for future directions in research and the analysis of future results.



中文翻译:

建模表明,mRNA和蛋白质的降解是冷驯化过程中的一种潜在调控机制

植物不断暴露于温度波动中,因为温度会影响反应的可能性和速度,因此温度波动会直接影响所有细胞反应。叶绿体对植物的温度适应反应至关重要,因为它们的光合作用反应的产物在植物新陈代谢中起着核心作用。因此,叶绿体可作为温度变化的传感器,同时也是温度适应的主要目标。叶绿体中编码了参与光合作用的光反应的复合物的核心亚基。结果,假定植物中的温度适应需要叶绿体基因表达和蛋白质更新中的调节反应。我们进行了蛋白质印迹实验,以评估两种光合复合物(PSII,和Cytb6f复合体)和ATP合酶在烟草植物适应低温后的两天内。令人惊讶的是,与对照相比,叶绿体中蛋白质的浓度变化可忽略不计。为了解释这一发现,我们使用了一个简化的转录,翻译,mRNA降解和蛋白质降解的常微分方程(ODE)模型来解释如何使蛋白质浓度保持恒定。该模型考虑了温度对这些过程的影响。通过对ODE模型的仿真,我们表明mRNA和蛋白质的降解是温度驯化过程中可能的控制目标。我们的模型为将来的研究方向和对未来成果的分析提供了基础。令人惊讶的是,与对照相比,叶绿体中蛋白质的浓度变化可忽略不计。为了解释这一观察结果,我们使用了一个简化的转录,翻译,mRNA降解和蛋白质降解的常微分方程(ODE)模型来解释如何使蛋白质浓度保持恒定。该模型考虑了温度对这些过程的影响。通过对ODE模型的仿真,我们表明mRNA和蛋白质的降解是温度驯化过程中可能的控制目标。我们的模型为将来的研究方向和对未来成果的分析提供了基础。令人惊讶的是,与对照相比,叶绿体中蛋白质的浓度变化可忽略不计。为了解释这一发现,我们使用了一个简化的转录,翻译,mRNA降解和蛋白质降解的常微分方程(ODE)模型来解释如何使蛋白质浓度保持恒定。该模型考虑了温度对这些过程的影响。通过对ODE模型的仿真,我们表明mRNA和蛋白质的降解是温度驯化过程中可能的控制目标。我们的模型为将来的研究方向和对未来成果的分析提供了基础。翻译,mRNA降解和蛋白质降解,以解释如何保持蛋白质浓度恒定。该模型考虑了温度对这些过程的影响。通过对ODE模型的仿真,我们表明mRNA和蛋白质的降解是温度驯化过程中可能的控制目标。我们的模型为将来的研究方向和对未来成果的分析提供了基础。翻译,mRNA降解和蛋白质降解,以解释如何保持蛋白质浓度恒定。该模型考虑了温度对这些过程的影响。通过对ODE模型的仿真,我们表明mRNA和蛋白质的降解是温度驯化过程中可能的控制目标。我们的模型为将来的研究方向和对未来成果的分析提供了基础。

更新日期:2021-04-23
down
wechat
bug