当前位置: X-MOL 学术J. Sound Vib. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An approximate method for pipes conveying fluid with strong boundaries
Journal of Sound and Vibration ( IF 4.3 ) Pub Date : 2021-04-23 , DOI: 10.1016/j.jsv.2021.116157
Xiao-Ye Mao , Song Shu , Xin Fan , Hu Ding , Li-Qun Chen

An approximate method is proposed for the strong nonlinear and non-homogenous boundary value problem of a pipe conveying fluid for the first time. Usually, the boundary value is satisfied transcendentally in the truncation processing acting on the partial differential governing equation. However, the nonlinear and non-homogenous boundary disables it. To overcome this problem, the method of modal correction together with the modal projection is proposed. This method treats nonlinear and non-homogenous boundaries as generalized governing equations. Since then, nonlinear and non-homogenous terms in the boundary could be discussed fully based on the harmonic balance method (HBM). The discussion on natural frequencies suggests the standard of the convergence of the modal projection. The harmonic convergence can be judged by the solution with more harmonics. By treating those coefficients of harmonics as time-varying parameters, state equations will be produced. Based on them, both of the stability of the approximate solution and the type of bifurcation could be judged. Besides, coefficients of each order harmonic on different modal projections or spatial corrections could reveal the detailed information of the response, such as the harmonic caused by the nonlinearity or the power distribution on different modal projection. By comparing with the Dirac operator and the multiscale method, the advantage of the proposed method on dealing with strong boundaries is verified. Nonlinear and non-homogenous boundaries are not the trap for the gyroscopic system anymore.



中文翻译:

具有强边界的流体输送管道的近似方法

针对首次输送流体的强非线性和非齐次边值问题,提出了一种近似方法。通常,在作用于偏微分控制方程的截断处理中,先验地满足边界值。但是,非线性和非均匀边界会禁用它。为了克服这个问题,提出了一种模态校正方法以及模态投影方法。该方法将非线性和非均匀边界视为广义控制方程。从那时起,可以基于谐波平衡法(HBM)全面讨论边界中的非线性和非齐次项。关于固有频率的讨论提出了模态投影收敛的标准。谐波收敛可以通过更多谐波的解来判断。通过将那些谐波系数视为随时间变化的参数,将生成状态方程。基于它们,可以判断近似解的稳定性和分叉的类型。此外,在不同模态投影或空间校正下的每个阶次谐波的系数可以揭示响应的详细信息,例如由非线性或不同模态投影上的功率分布引起的谐波。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。通过将那些谐波系数视为随时间变化的参数,将生成状态方程。基于它们,可以判断近似解的稳定性和分叉的类型。此外,在不同模态投影或空间校正下的每个阶次谐波的系数可以揭示响应的详细信息,例如由非线性或不同模态投影上的功率分布引起的谐波。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。通过将那些谐波系数视为随时间变化的参数,将生成状态方程。基于它们,可以判断近似解的稳定性和分叉的类型。此外,在不同模态投影或空间校正下的每个阶次谐波的系数可以揭示响应的详细信息,例如由非线性或不同模态投影上的功率分布引起的谐波。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。可以判断近似解的稳定性和分叉的类型。此外,在不同模态投影或空间校正下的每个阶次谐波的系数可以揭示响应的详细信息,例如由非线性或不同模态投影上的功率分布引起的谐波。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。可以判断近似解的稳定性和分叉的类型。此外,在不同模态投影或空间校正下的每个阶次谐波的系数可以揭示响应的详细信息,例如由非线性或不同模态投影上的功率分布引起的谐波。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。通过与Dirac算子和多尺度方法进行比较,验证了该方法在处理强边界上的优势。非线性和非均匀边界不再是陀螺系统的陷阱。

更新日期:2021-05-03
down
wechat
bug