当前位置: X-MOL 学术J. Thermophys. Heat Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Steam-Assisted Cracking of n-Dodecane in a Packed-Bed Reactor for Hypersonic Thermal Management
Journal of Thermophysics and Heat Transfer ( IF 1.1 ) Pub Date : 2021-04-23 , DOI: 10.2514/1.t6035
Bradley J. Smith 1 , Jamie S. Ervin 1 , Thomas L. Reitz 2
Affiliation  

Heat removal capacity of catalytically cracked supercritical n-dodecane as a jet fuel analogue in a cylindrical packed-bed reactor is examined. Fuel cracking is endothermic, and can be used in designing a potential hypersonic vehicle thermal management system. In this work, n-dodecane endotherm and product distributions were examined using a platinum catalyst on a ceramic support matrix. Although many previous fuel studies have used catalyst coated tubes, this study made use of a solid catalyst structure in a packed bed to distribute the catalyst throughout the fuel flow in order to provide more surface catalyst sites. The packed- bed reactor was treated as an ideal plug flow reactor, which assumes catalytic reactions that are radially uniform across the reactor diameter. Additionally, water was added to study its mitigation effect on coke formation and deposition on the reactor catalyst. Many previous jet fuel studies have either used a catalyst to aid in endothermic thermal management or have focused on water addition to reduce coke formation. This study combines these approaches. A catalyst is used to initiate endothermic reactions at lower temperatures than would ordinarily be achieved by thermal cracking alone, in conjunction with steam addition to mitigate coking. The packed-bed catalyst configuration provides catalytic action even as temperatures increase and thermal cracking becomes dominant, thereby enhancing the chemical heat sink. Water addition also provided coking mitigation, although with an associated decrease in dodecane conversion, and, hence, heat sink capability.



中文翻译:

填充床反应器中正十二烷的蒸汽辅助裂解,用于高超声速热管理

检查了圆柱形填充床反应器中催化裂化的超临界正十二烷作为喷气燃料类似物的散热能力。燃料裂解是吸热的,可用于设计潜在的高超声速车辆热管理系统。在这项工作中,使用陶瓷载体基质上的铂催化剂检查了正十二烷吸热和产物分布。尽管许多以前的燃料研究都使用了催化剂涂覆的管,但该研究利用填充床中的固体催化剂结构在整个燃料流中分配催化剂,以提供更多的表面催化剂位点。填充床反应器被视为理想的活塞流反应器,它假设催化反应在整个反应器直径上径向均一。此外,添加水以研究其对焦炭形成和反应器催化剂上沉积的缓解作用。先前的许多喷气燃料研究要么使用催化剂来辅助吸热热管理,要么专注于添加水以减少积炭。这项研究结合了这些方法。与单独通过热裂化结合蒸汽添加以减轻焦化相比,使用催化剂在较低的温度下引发吸热反应。即使温度升高并且热裂化变得占优势,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。先前的许多喷气燃料研究要么使用催化剂来辅助吸热热管理,要么专注于添加水以减少积炭。这项研究结合了这些方法。与单独通过热裂化结合蒸汽添加以减轻焦化相比,使用催化剂在较低的温度下引发吸热反应。即使温度升高并且热裂化变得占优势,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。先前的许多喷气燃料研究要么使用催化剂来辅助吸热热管理,要么专注于添加水以减少积炭。这项研究结合了这些方法。与单独通过热裂化结合蒸汽添加以减轻焦化相比,使用催化剂在较低的温度下引发吸热反应。即使温度升高并且热裂化变得占优势,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。这项研究结合了这些方法。与单独通过热裂化结合蒸汽添加以减轻焦化相比,使用催化剂在较低的温度下引发吸热反应。即使温度升高并且热裂化变得占优势,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。这项研究结合了这些方法。与单独通过热裂化结合蒸汽添加以减轻焦化相比,使用催化剂在较低的温度下引发吸热反应。即使温度升高并且热裂化变得占优势,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。即使温度升高并且热裂化变得占优势,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。即使温度升高且热裂化占主导地位,填充床催化剂构型也提供催化作用,从而增强了化学散热器。添加水还可以减轻焦化,尽管会导致十二烷转化率下降,从而导致散热能力下降。

更新日期:2021-04-23
down
wechat
bug