当前位置: X-MOL 学术Adsorption › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids
Adsorption ( IF 3.0 ) Pub Date : 2021-04-22 , DOI: 10.1007/s10450-021-00314-y
Brandon C. Bukowski , Frerich J. Keil , Peter I. Ravikovitch , German Sastre , Randall Q. Snurr , Marc-Olivier Coppens

Nanoporous solids are ubiquitous in chemical, energy, and environmental processes, where controlled transport of molecules through the pores plays a crucial role. They are used as sorbents, chromatographic or membrane materials for separations, and as catalysts and catalyst supports. Defined as materials where confinement effects lead to substantial deviations from bulk diffusion, nanoporous materials include crystalline microporous zeotypes and metal–organic frameworks (MOFs), and a number of semi-crystalline and amorphous mesoporous solids, as well as hierarchically structured materials, containing both nanopores and wider meso- or macropores to facilitate transport over macroscopic distances. The ranges of pore sizes, shapes, and topologies spanned by these materials represent a considerable challenge for predicting molecular diffusivities, but fundamental understanding also provides an opportunity to guide the design of new nanoporous materials to increase the performance of transport limited processes. Remarkable progress in synthesis increasingly allows these designs to be put into practice. Molecular simulation techniques have been used in conjunction with experimental measurements to examine in detail the fundamental diffusion processes within nanoporous solids, to provide insight into the free energy landscape navigated by adsorbates, and to better understand nano-confinement effects. Pore network models, discrete particle models and synthesis-mimicking atomistic models allow to tackle diffusion in mesoporous and hierarchically structured porous materials, where multiscale approaches benefit from ever cheaper parallel computing and higher resolution imaging. Here, we discuss synergistic combinations of simulation and experiment to showcase theoretical progress and computational techniques that have been successful in predicting guest diffusion and providing insights. We also outline where new fundamental developments and experimental techniques are needed to enable more accurate predictions for complex systems.



中文翻译:

理论与模拟与实验相结合,研究纳米多孔固体中的扩散

纳米多孔固体在化学,能源和环境过程中无处不在,其中分子通过孔的受控传输起着至关重要的作用。它们用作分离剂的吸附剂,色谱或膜材料,以及用作催化剂和催化剂载体。纳米多孔材料被定义为限制作用导致与本体扩散大相径庭的材料,包括结晶微孔分子型和金属有机骨架(MOF),以及许多半结晶和无定形介孔固体,以及分层结构的材料,其中包含纳米孔和较宽的中孔或大孔,以促进在宏观距离上的运输。这些材料所涵盖的孔径,形状和拓扑结构范围对于预测分子扩散性构成了巨大挑战,但基本的了解也为指导新型纳米多孔材料的设计提供了机会,以提高受限运输过程的性能。综合方面的显着进步日益使这些设计得以付诸实践。分子模拟技术已与实验测量结合使用,以详细检查纳米孔固体中的基本扩散过程,以洞悉被吸附物引导的自由能态势,并更好地理解纳米约束作用。孔网络模型,离散粒子模型和合成模拟原子模型可以解决介孔和分层结构的多孔材料中的扩散问题,其中多尺度方法得益于更便宜的并行计算和更高分辨率的成像。这里,我们将讨论模拟与实验的协同组合,以展示理论上的进步和计算技术,这些技术和方法已成功地预测了来宾扩散并提供了见解。我们还概述了需要进行新的基本开发和实验技术的地方,以实现对复杂系统的更准确的预测。

更新日期:2021-04-22
down
wechat
bug