当前位置: X-MOL 学术Ecol. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting anoxia in low-nutrient temperate lakes
Ecological Applications ( IF 4.3 ) Pub Date : 2021-04-21 , DOI: 10.1002/eap.2361
Jeremy Deeds 1, 2 , Aria Amirbahman 3 , Stephen A Norton 4 , Douglas G Suitor 1 , Linda C Bacon 1, 2
Affiliation  

Absence of dissolved oxygen (anoxia) in the hypolimnion of lakes can eliminate habitat for sensitive species and may induce the release of sediment-bound phosphorus. Lake anoxia generally results from decomposition of organic matter, which is exacerbated by high nutrient loads. Total phosphorus (TP) in lakes is regulated by static aspects of the lake’s watershed, but lake TP can be readily increased by human activities. In some low-nutrient lakes, basin morphometry may induce naturally occurring anoxia. The occurrence of natural anoxia is especially important to consider in lake water quality assessments that compare observed conditions to expected reference conditions. To investigate the occurrence of natural vs. anthropogenically influenced anoxia, we constructed a logistic regression model to calculate the probability of low-nutrient lakes (TP < 15 µg/L) developing aerial anoxic extent ≥10% by testing the predictive potential of variables related to basin morphometry, depths of lake thermal strata, epilimnetic TP, and dissolved organic carbon (DOC). Maximum lake depth and the proportion of lake area under the top of the metalimnion were the most important variables to predict the likelihood of hypolimnetic anoxia, which correctly predicted anoxic condition in 84% of lakes (Model 1). Adding TP as a third variable to Model 1 produced a significantly improved model (Model 2) but the prediction success rate was comparable (86%). We also present a model for lakes with limited bathymetric data, which predicts anoxia with 81% accuracy based on maximum lake depth and mean thermocline depth at peak stratification. DOC was relatively low (4.3 ± 1.5 mg/L [mean ± SD]) in the study lakes and its inclusion did not improve model performance. In Model 1, lakes with an anoxic extent ≥10% of lake area had significantly higher epilimnetic TP than lakes with oxic hypolimnia, regardless of prediction category or success. Our results indicate that including TP as a variable helps refine models based on morphometry alone, but lake morphometry and stratification dynamics are the most important factors in the development of anoxic extent in low-nutrient temperate lakes. Our approach informs studies concerned with identifying key factors that influence regime shifts in a variety of ecosystems.

中文翻译:

低营养温带湖泊缺氧预测

湖泊低水层中没有溶解氧(缺氧)会消除敏感物种的栖息地,并可能导致沉积物中磷的释放。湖泊缺氧通常是由有机物质分解引起的,而高营养负荷会加剧这种情况。湖泊中的总磷 (TP) 受湖泊流域的静态方面的调节,但人类活动很容易增加湖泊的总磷。在一些低营养湖泊中,盆地形态测量可能会导致自然发生的缺氧。在将观察到的条件与预期的参考条件进行比较的湖泊水质评估中,考虑自然缺氧的发生尤为重要。调查自然与人为影响缺氧的发生,我们构建了一个逻辑回归模型来计算低营养湖泊 (TP < 15 µg/L) 发展空气缺氧程度≥10% 的概率,通过测试与盆地形态测量、湖泊热地层深度、流域 TP 相关变量的预测潜力和溶解有机碳 (DOC)。最大湖泊深度和金属离子顶部下的湖泊面积比例是预测水下缺氧可能性的最重要变量,正确预测了 84% 湖泊的缺氧状况(模型 1)。将 TP 作为第三个变量添加到模型 1 产生了显着改进的模型(模型 2),但预测成功率相当(86%)。我们还提供了一个具有有限测深数据的湖泊模型,根据最大湖泊深度和峰值分层时的平均温跃层深度,预测缺氧的准确率为 81%。研究湖泊中的 DOC 相对较低(4.3 ± 1.5 mg/L [平均值 ± SD]),并且包含它并没有提高模型性能。在模型 1 中,无论预测类别或成功与否,缺氧程度≥10% 湖泊面积的湖泊具有明显高于含氧性低沼泽湖泊的浮游总磷。我们的结果表明,将 TP 作为变量有助于完善基于形态计量学的模型,但湖泊形态计量学和分层动力学是低营养温带湖泊缺氧程度发展的最重要因素。我们的方法为有关确定影响各种生态系统变化的关键因素的研究提供信息。5 mg/L [平均值±标准差])在研究湖泊中,其包含并没有提高模型性能。在模型 1 中,无论预测类别或成功与否,缺氧程度≥10% 湖泊面积的湖泊具有显着高于含氧性低沼泽湖泊的浮游总磷。我们的结果表明,将 TP 作为变量有助于完善基于形态计量学的模型,但湖泊形态计量学和分层动力学是低营养温带湖泊缺氧程度发展的最重要因素。我们的方法为有关确定影响各种生态系统变化的关键因素的研究提供信息。5 mg/L [平均值±标准差])在研究湖泊中,其包含并没有提高模型性能。在模型 1 中,无论预测类别或成功与否,缺氧程度≥10% 湖泊面积的湖泊具有明显高于含氧性低沼泽湖泊的浮游总磷。我们的结果表明,将 TP 作为变量有助于完善基于形态计量学的模型,但湖泊形态计量学和分层动力学是低营养温带湖泊缺氧程度发展的最重要因素。我们的方法为有关确定影响各种生态系统变化的关键因素的研究提供信息。无论预测类别或成功。我们的结果表明,将 TP 作为变量有助于完善基于形态计量学的模型,但湖泊形态计量学和分层动力学是低营养温带湖泊缺氧程度发展的最重要因素。我们的方法为有关确定影响各种生态系统变化的关键因素的研究提供信息。无论预测类别或成功。我们的结果表明,将 TP 作为变量有助于完善基于形态计量学的模型,但湖泊形态计量学和分层动力学是低营养温带湖泊缺氧程度发展的最重要因素。我们的方法为有关确定影响各种生态系统变化的关键因素的研究提供信息。
更新日期:2021-04-21
down
wechat
bug