当前位置: X-MOL 学术IMA J. Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An initial-boundary value problem for the general three-component nonlinear Schrödinger equations on a finite interval
IMA Journal of Applied Mathematics ( IF 1.4 ) Pub Date : 2021-03-04 , DOI: 10.1093/imamat/hxab007
Zhenya Yan 1, 2
Affiliation  

The general three-component nonlinear Schrödinger (gtc-NLS) equations are completely integrable and contain the self-focusing, defocusing and mixed cases, which are applied in many physical fields. In this paper, we would like to use the Fokas method to explore the initial-boundary value (IBV) problem for the gtc-NLS equations with a $4\times 4$ matrix Lax pair on a finite interval based on the inverse scattering transform. The solutions of the gtc-NLS equations can be expressed using the solution of a $4\times 4$ matrix Riemann–Hilbert (RH) problem constructed in the complex $k$-plane. The jump matrices of the RH problem can be explicitly found in terms of three spectral functions related to the initial data, and the Dirichlet–Neumann boundary data, respectively. The global relation between the distinct spectral functions is also proposed to derive two distinct but equivalent types of representations of the Dirichlet–Neumann boundary value problems. Particularly, the relevant formulae for the boundary value problems on the finite interval can generate ones on the half-line as the length of the interval closes to infinity. Finally, we also analyse the linearizable boundary conditions for the Gel’fand–Levitan–Marchenko representation. These results will be useful to further study the solution properties of the IBV problem of the gtc-NLS system by using the Deift–Zhou’s nonlinear steepest descent method and some numerical methods.

中文翻译:

有限区间上一般三分量非线性薛定谔方程的初边值问题

一般的三分量非线性薛定谔(gtc-NLS)方程是完全可积的,包含自聚焦、散焦和混合情况,应用于许多物理领域。在本文中,我们将使用 Fokas 方法来探索基于逆散射变换的有限区间上具有 $4\times 4$ 矩阵 Lax 对的 gtc-NLS 方程的初始边界值 (IBV) 问题。gtc-NLS 方程的解可以使用在复 $k$ 平面中构造的 $4\times 4$ 矩阵 Riemann-Hilbert (RH) 问题的解来表示。RH 问题的跳跃矩阵可以分别根据与初始数据和 Dirichlet-Neumann 边界数据相关的三个谱函数明确地找到。还提出了不同谱函数之间的全局关系,以导出 Dirichlet-Neumann 边值问题的两种不同但等效的表示类型。特别是,有限区间上的边值问题的相关公式可以在区间长度接近无穷大时产生半线上的公式。最后,我们还分析了 Gel'fand-Levitan-Marchenko 表示的线性化边界条件。这些结果将有助于利用Deift-Zhou的非线性最速下降法和一些数值方法进一步研究gtc-NLS系统的IBV问题的解性质。有限区间边值问题的相关公式可以在区间长度接近无穷大时产生半线上的公式。最后,我们还分析了 Gel'fand-Levitan-Marchenko 表示的线性化边界条件。这些结果将有助于利用Deift-Zhou的非线性最速下降法和一些数值方法进一步研究gtc-NLS系统的IBV问题的解性质。有限区间边值问题的相关公式可以在区间长度接近无穷大时产生半线上的公式。最后,我们还分析了 Gel'fand-Levitan-Marchenko 表示的线性化边界条件。这些结果将有助于利用Deift-Zhou的非线性最速下降法和一些数值方法进一步研究gtc-NLS系统的IBV问题的解性质。
更新日期:2021-03-04
down
wechat
bug