当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The recrystallization behaviors of hot-rolled W-TiC plates
International Journal of Refractory Metals & Hard Materials ( IF 4.2 ) Pub Date : 2021-04-21 , DOI: 10.1016/j.ijrmhm.2021.105556
S. Miao , Y. Lin , Y.Q. Zhao , Z.M. Xie

This work described an experimental investigation on the recrystallization behaviors of the hot-rolled particle strengthened W (PSW) material. Upon annealing, the three processes, that is, recovery, recrystallization and grain growth, proceed in a discontinuous fashion for our PSW material, and two or more processes could simultaneously occur in local regions. At an annealing temperature spanning from 1300 °C to 1500 °C, recovery is in the dominant position which is verified by deformed grains over half of the whole, accompanying with a gentle decrease in hardness. Meanwhile, recrystallization nucleation, primary recrystallization and abnormal grain growth is identified at 1300 °C, 1400 °C and 1500 °C, respectively. Further increasing the annealing temperature to 1600 °C and 1700 °C, normal grain growth takes precedence over recovery, along with a marked reduction in hardness. TEM observations show that owing to microstructural heterogeneity induced by particle dispersion, local regions have an advantage in terms of strain energy storage over other regions during hot rolling, enabling a preferential recrystallization nucleation at 1300 °C; whereas nanosized TiC particles are capable of inhibiting grain growth at elevated temperature, and thus retard the recrystallization rate. In addition, our as-rolled PSW material exhibits a different texture, and the dominant α-fiber of {100}〈011〉 and {112}〈1−10〉 transforms into γ-fiber texture of {111}〈011〉 and {111}〈−1−12〉 during recrystallization.



中文翻译:

W-TiC热轧板的再结晶行为

这项工作描述了对热轧颗粒增强W(PSW)材料的重结晶行为的实验研究。退火后,对于我们的PSW材料,三个过程(即恢复,再结晶和晶粒长大)以不连续的方式进行,并且在局部区域可能同时发生两个或多个过程。在1300°C至1500°C的退火温度下,恢复处于主导地位,这是由变形晶粒占整体一半的结果所证实的,同时硬度也逐渐降低。同时,分别在1300°C,1400°C和1500°C下确定了再结晶成核,初次再结晶和异常晶粒生长。进一步将退火温度提高到1600°C和1700°C,正常晶粒生长优先于恢复,以及硬度的显着降低。TEM观察表明,由于颗粒分散引起的微观结构异质性,局部区域在热轧过程中的应变能存储方面优于其他区域,从而在1300°C时具有优先的重结晶成核能力。而纳米TiC颗粒能够抑制高温下的晶粒长大,从而阻碍了再结晶速率。此外,我们轧制的PSW材料表现出不同的织构,{100} <011>和{112} <1-10>的主要α纤维转变为{111} <011>的γ纤维织构,并且{111} 〈− 1-12〉在重结晶期间。与热轧过程中的其他区域相比,局部区域在应变能存储方面具有优势,可以在1300°C时优先进行重结晶成核。而纳米TiC颗粒能够抑制高温下的晶粒长大,从而阻碍了再结晶速率。此外,我们轧制的PSW材料表现出不同的织构,{100} <011>和{112} <1-10>的主要α纤维转变为{111} <011>的γ纤维织构,并且{111} 〈− 1-12〉在重结晶期间。与热轧过程中的其他区域相比,局部区域在应变能存储方面具有优势,可以在1300°C时优先进行重结晶成核。而纳米TiC颗粒能够抑制高温下的晶粒长大,从而阻碍了再结晶速率。此外,我们轧制的PSW材料表现出不同的织构,{100} <011>和{112} <1-10>的主要α纤维转变为{111} <011>的γ纤维织构,并且{111} 〈− 1-12〉在重结晶期间。

更新日期:2021-04-23
down
wechat
bug