当前位置: X-MOL 学术IEEE T. Magn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-Efficient Nonvolatile Approximate Full-Adder With Spin-Hall-Assisted MTJ Cells for In-Memory Computing Applications
IEEE Transactions on Magnetics ( IF 2.1 ) Pub Date : 2021-03-08 , DOI: 10.1109/tmag.2021.3064224
Sepahrad Salavati , Mohammad Hossein Moaiyeri , Kian Jafari

Approximate computing aims to reduce the power consumption and design complexity of digital systems with the cost of a tolerable error. In this article, two ultra-efficient magnetic approximate full adders are presented for computing-in-memory applications. The proposed ultra-efficient full adder blocks are coupled with a memory cell based on magnetic tunnel junction (MTJ) to allow for nonvolatility. Therefore, they can be power-gated when required. Both the proposed full adders have simple designs and are energy-efficient. Instead of introducing dedicated write-driver and read circuits, the restorer latch inverters are utilized to contribute to the read and write operations, which results in a lower complexity. The peripheral circuitries are designed based on the gate-all-around carbon nanotube field-effect transistor (GAA-CNTFET). The hardware simulation results show a 5.2 times improvement (78% reduction) in power-delay product (PDP), on average, compared with the previous fully nonvolatile approximate full adders. Utilizing the approximate adders in Gaussian filters to denoise a noisy image revealed that our proposed adders result in almost the same image quality as an accurate adder. Both our adders have an accurate carry output and two erroneous sum outputs. Nevertheless, these two erroneous outputs have a low-value gap, which results in higher quality in image processing applications. The results indicate that the proposed designs make an effective tradeoff between energy and accuracy, which is the main goal of approximate computing.

中文翻译:

具有自旋霍尔辅助MTJ单元的超高效非易失性近似全加器,用于存储器中的计算应用

近似计算旨在以可容忍的错误为代价,降低数字系统的功耗和设计复杂性。在本文中,针对内存计算应用提出了两种超高效磁近似全加法器。所提出的超高效全加器模块与基于磁隧道结(MTJ)的存储单元耦合,以实现非易失性。因此,可以在需要时对它们进行电源门控。所提出的全部加法器都具有简单的设计并且是节能的。代替引入专用的写入驱动器和读取电路,恢复器锁存器反相器被用于促进读取和写入操作,这导致较低的复杂度。外围电路是基于环绕栅碳纳米管场效应晶体管(GAA-CNTFET)设计的。硬件仿真结果表明,与之前的完全非易失性近似完全加法器相比,功率延迟乘积(PDP)平均提高了5.2倍(降低了78%)。利用高斯滤波器中的近似加法器对噪声图像进行降噪显示,我们提出的加法器产生的图像质量几乎与精确加法器相同。我们的两个加法器都有一个精确的进位输出和两个错误的总和输出。但是,这两个错误的输出之间的值差距很小,从而导致图像处理应用中的质量更高。结果表明,提出的设计在能量和精度之间进行了有效的折衷,这是近似计算的主要目标。与之前的完全非易失性近似完全加法器相比。利用高斯滤波器中的近似加法器对噪声图像进行降噪显示,我们提出的加法器产生的图像质量几乎与精确加法器相同。我们的两个加法器都有一个精确的进位输出和两个错误的总和输出。但是,这两个错误的输出之间的值差距很小,从而导致图像处理应用中的质量更高。结果表明,提出的设计在能量和精度之间进行了有效的折衷,这是近似计算的主要目标。与之前的完全非易失性近似完全加法器相比。利用高斯滤波器中的近似加法器对噪声图像进行降噪显示,我们提出的加法器产生的图像质量几乎与精确加法器相同。我们的两个加法器都有一个精确的进位输出和两个错误的总和输出。但是,这两个错误的输出之间的值差距很小,从而导致图像处理应用中的质量更高。结果表明,提出的设计在能量和精度之间进行了有效的折衷,这是近似计算的主要目标。我们的两个加法器都有一个精确的进位输出和两个错误的总和输出。但是,这两个错误的输出之间的值差距很小,从而导致图像处理应用中的质量更高。结果表明,提出的设计在能量和精度之间进行了有效的折衷,这是近似计算的主要目标。我们的两个加法器都有一个精确的进位输出和两个错误的总和输出。但是,这两个错误的输出之间的值差距很小,从而导致图像处理应用中的质量更高。结果表明,提出的设计在能量和精度之间进行了有效的折衷,这是近似计算的主要目标。
更新日期:2021-04-20
down
wechat
bug