Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Coherent elastic neutrino nucleus scatter response of semiconductor detectors to nuclear reactor antineutrinos
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment ( IF 1.5 ) Pub Date : 2021-04-20 , DOI: 10.1016/j.nima.2021.165342
Wei Eng Ang , Shikha Prasad , Rupak Mahapatra

We studied the performance of advanced semiconductor detectors to measure reactor antineutrino with the potential to drastically improve efficiency and lower existing thresholds of detectable incident-antineutrino-energy. Recent developments, such as those by the Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at Texas A&M University, in semiconductor technologies have enabled the ability to lower the coherent-elastic-neutrino-nucleus-scatter (CEνNS) based detection threshold to nuclear recoil energies between 10-eV and 100-eV (Dutta et al., 2016). Existing detectors based on inverse beta decay (IBD) have a threshold of 1.806 MeV (Oralbaev et al., 2016). In this study, we calculated the CEνNS response of semiconductor detectors to antineutrino flux from a 1-MW(th) TRIGA reactor as a function of incident antineutrino energy. In the calculations, the reaction rates of detectors made of germanium and silicon are calculated for a 100-kg detector and placed 10 m from the core. No background radiation characterization and reduction were performed. First, the reactor antineutrino flux spectrum is obtained for the fuel composition specific to 1-MW(th) TRIGA reactor without any thresholds. Next, the standard model (SM) of physics is used to calculate the CEνNS cross-section as a function of incident antineutrino energy. Finally, the above two functions are convolved to provide the detector response for both, germanium and silicon detectors. The results show that germanium has a greater efficiency than silicon; however, it is shown that silicon is sensitive to lower antineutrino energies. It is found that a 100-eV nuclear recoil in germanium semiconductor detectors can be produced by a minimum incident energy of 1.84 MeV antineutrinos, and in silicon by 1.14 MeV antineutrinos. For the lower threshold, a 20-eV nuclear recoil in germanium semiconductors can be produced by a minimum incident energy of 0.82 MeV antineutrinos and in Si by 0.51 MeV antineutrinos. Lowering the detector response energy sensitivity equips us with newer techniques for nuclear fuel monitoring.



中文翻译:

半导体探测器对核反应堆反中微子的相干弹性中微子核散射响应

我们研究了用于测量反应堆中微子的先进半导体探测器的性能,该技术有可能极大地提高效率并降低可检测到的入射中微子能量的现有阈值。半导体技术方面的最新进展,例如德克萨斯州农工大学米歇尔研究所中微子反应堆实验(MINER)的实验,已经使人们能够降低相干弹性中微子核散射(CE)的能力。ν基于NS)的10-eV和100-eV之间的核反冲能量的检测阈值(Dutta等人,2016)。现有基于反β衰减(IBD)的探测器的阈值为1.806 MeV(Oralbaev等人,2016)。在这项研究中,我们计算了CEν半导体探测器对1-MW(th)TRIGA反应堆的抗中微子通量的NS响应是入射抗中微子能量的函数。在计算中,对于100公斤的探测器,将锗和硅制成的探测器的反应速率计算出来,并将其放置在距堆芯10 m处。没有进行背景辐射表征和减少。首先,获得了针对1-MW(th)TRIGA反应堆特有的燃料成分的反应堆抗中微子通量谱,没有任何阈值。接下来,使用物理标准模型(SM)来计算CEνNS横截面随入射抗中微子能量的变化而变化。最后,将以上两个功能进行卷积以提供锗和硅探测器的探测器响应。结果表明,锗的效率比硅高。然而,表明硅对较低的抗中微子能量敏感。发现在锗半导体探测器中,最低入射能量为1.84 MeV反中微子,而在硅中则为1.14 MeV反中微子,会产生100 eV的核反冲。对于较低的阈值,锗半导体中的最小入射能量为0.82 MeV反中微子,而在硅中则为0.51 MeV反中微子,从而产生20 eV的核反冲。降低探测器响应能量灵敏度使我们配备了更新的核燃料监测技术。

更新日期:2021-04-30
down
wechat
bug