当前位置: X-MOL 学术Mech. Mach. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of dynamic misalignment on the vibration response, trajectory followed and defect-depth achieved by the rolling-elements in a double-row spherical rolling-element bearing
Mechanism and Machine Theory ( IF 5.2 ) Pub Date : 2021-04-20 , DOI: 10.1016/j.mechmachtheory.2021.104366
Vivek Parmar , V Huzur Saran , SP Harsha

Dynamic-misalignment beyond a specific limit suggests some abnormal systems’ behaviour and, if not dealt with appropriately may lead to its sudden breakdown. To address this problem spherical rolling-element bearings are used which have the capacity to encounter such misalignment till a certain limit. Investigating this physical mechanism of such bearing's and quantifying the degree as well as nature of dynamic-misalignment can lead to diagnosing the root cause responsible for it. This paper thus aims at understanding the physics governing the vibration response of spherical rolling-element bearing with a localized defect and subjected to dynamic-misalignment at the same time, using numerical simulations and experimental validation. The numerically simulated results firstly show that an increase in radial and axial loads have a contrasting effect on the acceleration response and contact-load shared by the two bearing rows. Secondly, the rolling-elements while following an offset trajectory, significantly affect the bearing's vibration response as compared to an inclined trajectory and the depth achieved by rolling-elements inside defect also varies with varying misalignment angles. Thirdly. with an increase in misalignment, the strange attractors form intermittent behaviour with outer multi-periodic response having hidden chaos. The behaviour observed from the numerically simulated results was also validated from the vibration data obtained experimentally from the test-rig.



中文翻译:

动态未对准对双列球面滚动轴承中滚动元件的振动响应,轨迹跟踪和缺陷深度的影响

超出特定限制的动态失准表示某些异常系统的行为,如果未适当处理,则可能导致其突然崩溃。为了解决这个问题,使用了球面滚动轴承,它们具有承受这种不对中直到一定极限的能力。研究这种轴承的这种物理机制并量化动态未对准的程度和性质可导致诊断造成这种现象的根本原因。因此,本文旨在通过数值模拟和实验验证来理解控制具有局部缺陷并同时经受动态失准的球形滚动轴承振动响应的物理学。数值模拟结果首先表明,径向和轴向载荷的增加对两个轴承列所承受的加速度响应和接触载荷具有相反的影响。其次,与倾斜轨迹相比,滚动元件在遵循偏移轨迹时会显着影响轴承的振动响应,并且缺陷内部滚动元件所达到的深度也会随着未对准角度的变化而变化。第三。随着错位的增加,奇怪的吸引子形成间歇性行为,外部多周期反应具有隐藏的混乱。从数值模拟结果观察到的行为也通过从试验台实验获得的振动数据进行了验证。与倾斜的轨迹相比,沿偏移轨迹滚动时,滚动轴承会显着影响轴承的振动响应,并且缺陷内滚动元件所达到的深度也会随着未对准角度的变化而变化。第三。随着错位的增加,奇怪的吸引子形成间歇性行为,外部多周期反应具有隐藏的混乱。从数值模拟结果观察到的行为也通过从试验台实验获得的振动数据进行了验证。与倾斜的轨迹相比,沿偏移轨迹滚动时,滚动轴承会显着影响轴承的振动响应,并且缺陷内滚动元件所达到的深度也会随着未对准角度的变化而变化。第三。随着错位的增加,奇怪的吸引子形成间歇性行为,外部多周期反应具有隐藏的混乱。从数值模拟结果观察到的行为也通过从试验台实验获得的振动数据进行了验证。奇怪的吸引子形成间歇性行为,外部多周期反应具有隐藏的混沌。从数值模拟结果观察到的行为也通过从试验台实验获得的振动数据进行了验证。奇怪的吸引子形成间歇性行为,外部多周期反应具有隐藏的混沌。从数值模拟结果观察到的行为也通过从试验台实验获得的振动数据进行了验证。

更新日期:2021-04-20
down
wechat
bug