当前位置: X-MOL 学术J. Geophys. Res. Earth Surf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self‐Organization of Coastal Barrier Systems During the Holocene
Journal of Geophysical Research: Earth Surface ( IF 3.5 ) Pub Date : 2021-04-18 , DOI: 10.1029/2020jf005867
G. Mariotti 1, 2
Affiliation  

Understanding the response of coastal barrier systems to sea level rise is a crucial societal need. Despite the problem having been studied extensively, major knowledge gaps remain. For example, neither the sedimentary record nor existing numerical models have been conclusive in explaining the formation of barrier islands. Here I present a comprehensive 2D model that seamlessly couples cross‐shore and along‐shore transport, tidal transport, storm surges, and wind waves, and use it to simulate an idealized passive margin during the last 7,000 years. In the early Holocene, when sea level was rising ∼20 mm/yr, shoals and ephemeral barrier islands formed, periodically drowned, and then formed again at a landward location. Shoal emergence was triggered by the disequilibrium of the recently submerged shelf, especially for large waves and mild shelf slopes. About 5,000 years ago, as sea level rise slowed down to ∼1 mm/yr, barriers stabilized and even prograded seaward. The combination of excess sediment in the nearshore and storm surges allowed barriers to accrete above mean high water. When barriers eventually equilibrated to the new sea level rise rate and started to retreat, their retreat rate was highly variable in space and time due to autogenic processes such as inlet formation and backbarrier channel interception. This variability also included multi‐decadal periods of localized progradation. Both lag dynamics and autogenic processes confound the relationship between barrier retreat and sea level rise rate.

中文翻译:

全新世海岸屏障系统的自组织

了解沿海屏障系统对海平面上升的响应是一项至关重要的社会需求。尽管已经对该问题进行了广泛研究,但仍存在重大知识空白。例如,无论是沉积记录还是现有的数值模型都不能在解释障碍岛的形成上具有决定性的意义。在这里,我提出了一个全面的2D模型,该模型将跨岸和沿海运输,潮汐运输,风暴潮和风浪无缝地耦合在一起,并用它来模拟过去7,000年中的理想被动裕度。在全新世早期,当海平面上升到每年约20毫米时,浅滩和短暂的隔离岛形成,定期淹没,然后在陆上位置再次形成。浅滩的出现是由最近被淹没的架子的不平衡引起的,特别是对于大浪和温和的架子坡。大约5,000年前,随着海平面上升减慢至每年约1毫米,屏障趋于稳定,甚至向海推进。近岸过多的沉积物和风暴潮的结合使障碍物的堆积量超过了平均高水位。当障碍最终平衡到新的海平面上升速度并开始撤退时,由于自生过程(例如入口形成和后壁通道拦截),其撤退速度在空间和时间上变化很大。这种差异还包括数十年的局部发育期。滞后动力学和自生过程都使屏障撤退与海平面上升率之间的关系混淆。近岸过多的沉积物和风暴潮的结合使障碍物的堆积量超过了平均高水位。当障碍最终平衡到新的海平面上升速度并开始撤退时,由于自生过程(例如入口形成和后壁通道拦截),其撤退速度在空间和时间上变化很大。这种差异还包括数十年的局部发育期。滞后动力学和自生过程都使屏障撤退与海平面上升率之间的关系混淆。近岸过多的沉积物和风暴潮的结合使障碍物的堆积量超过了平均高水位。当障碍最终平衡到新的海平面上升速度并开始撤退时,由于自生过程(例如入口形成和后壁通道拦截),其撤退速度在空间和时间上变化很大。这种差异还包括数十年的局部发育期。滞后动力学和自生过程都使屏障撤退与海平面上升率之间的关系混淆。由于自生过程(例如入口形成和后屏障通道拦截),它们的退避率在空间和时间上变化很大。这种差异还包括数十年的局部发育期。滞后动力学和自生过程都使屏障撤退与海平面上升率之间的关系混淆。由于自生过程(例如入口形成和后屏障通道拦截),它们的退避率在空间和时间上变化很大。这种差异还包括数十年的局部发育期。滞后动力学和自生过程都使屏障撤退与海平面上升率之间的关系混淆。
更新日期:2021-05-12
down
wechat
bug