当前位置: X-MOL 学术Appl. Spectrosc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of phytoremediation for heavy metal contaminated sites in the South Pacific: strategies, current challenges and future prospects
Applied Spectroscopy Reviews ( IF 5.4 ) Pub Date : 2021-04-19 , DOI: 10.1080/05704928.2021.1904410
Ivan Diarra 1 , Krishna Kumar Kotra 2 , Surendra Prasad 1
Affiliation  

Abstract

Effectively dealing with hazardous and recalcitrant pollutants such as heavy metals (HMs) has become a global challenge with limited options available for reprieve. This is true for Pacific Island Countries and Territories (PICTs) which have witnessed significant economic transitions and substantial increases hazardous waste depositions. Although several physico-chemical remediation techniques exist, the economic and geographic limitations of PICTs render them impractical for the region. Phytoremediation, a plant–based remediation technology which exploits hyperaccumulator plants to extract, accumulate and/or stabilize HMs, has received significant interest as a sustainable and non–intrusive remediation option. Nonetheless, improving the application and efficiency of phytoremediation programs not only requires a better understanding of the fundamental mechanisms governing HM accumulation and tolerance in plants, but also demands fast and reliable spectroscopic techniques for in–situ analysis. This review critically examines the current practices in phytoremediation and its prospects for the treatment of HM–contaminated sites in PICTs. We also review the limitations of traditional spectroscopic techniques such as inductively coupled plasma mass spectroscopy/atomic emission spectroscopy (ICP–MS/AES) and the promise of novel techniques such as field portable X–ray fluorescence spectrometry (FP–XRF), atmospheric pressure discharge plasma (APDP) and lab on chip (LOC) in phytoremediation studies.



中文翻译:

植物修复在南太平洋重金属污染场地的应用:策略、当前挑战和未来前景

摘要

有效处理重金属 (HMs) 等有害和顽固的污染物已成为一项全球性挑战,可用于缓解的选择有限。太平洋岛国和地区 (PICT) 就是如此,它们见证了重大的经济转型和危险废物沉积量的大幅增加。尽管存在几种物理化学修复技术,但 PICT 的经济和地理限制使其在该地区不切实际。植物修复是一种基于植物的修复技术,它利用超富集植物来提取、积累和/或稳定 HMs,作为一种可持续和非侵入性的修复选择受到了极大的关注。尽管如此,提高植物修复程序的应用和效率不仅需要更好地了解控制植物中 HM 积累和耐受性的基本机制,还需要快速可靠的光谱技术进行原位分析。这篇综述批判性地审视了植物修复的当前实践及其在 PICT 中处理 HM 污染场地的前景。我们还回顾了电感耦合等离子体质谱/原子发射光谱 (ICP-MS/AES) 等传统光谱技术的局限性,以及现场便携式 X 射线荧光光谱 (FP-XRF)、大气压等新技术的前景。植物修复研究中的放电等离子体 (APDP) 和芯片实验室 ​​(LOC)。但也需要快速可靠的光谱技术进行原位分析。这篇综述批判性地审视了植物修复的当前实践及其在 PICT 中处理 HM 污染场地的前景。我们还回顾了电感耦合等离子体质谱/原子发射光谱 (ICP-MS/AES) 等传统光谱技术的局限性,以及现场便携式 X 射线荧光光谱 (FP-XRF)、大气压等新技术的前景。植物修复研究中的放电等离子体 (APDP) 和芯片实验室 ​​(LOC)。但也需要快速可靠的光谱技术进行原位分析。这篇综述批判性地审视了植物修复的当前实践及其在 PICT 中处理 HM 污染场地的前景。我们还回顾了电感耦合等离子体质谱/原子发射光谱 (ICP-MS/AES) 等传统光谱技术的局限性,以及现场便携式 X 射线荧光光谱 (FP-XRF)、大气压等新技术的前景。植物修复研究中的放电等离子体 (APDP) 和芯片实验室 ​​(LOC)。

更新日期:2021-04-19
down
wechat
bug