当前位置: X-MOL 学术J. Mar. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Research on Hypergeometric-Gaussian Vortex Beam Propagating under Oceanic Turbulence by Theoretical Derivation and Numerical Simulation
Journal of Marine Science and Engineering ( IF 2.7 ) Pub Date : 2021-04-19 , DOI: 10.3390/jmse9040442
Xinguang Wang , Le Wang , Shengmei Zhao

In this paper, we use two methods to research the propagation characteristics of a Hypergeometric-Gaussian (HyGG) vortex beam under oceanic turbulence. One is numerical calculation based on the Rytov approximation theory, where the theoretical detection probability equation of the HyGG vortex beam propagating through oceanic turbulence is derived. The other is numerical simulation based on random phase screens model of oceanic turbulence, where the influences generated by oceanic turbulence on the phase and intensity of the propagation beam as well as the propagation of the beam through several independent phase screens, kept at the same distance, have the same effect. The effects of oceanic turbulence parameters and initial beam parameters on the detection probability of the HyGG vortex beam at the receiver are discussed. The results of theoretical derivation are well in agreement with those of numerical simulation, which demonstrated that the numerical simulation method could effectively simulate the complex theoretical derivation. Both results show that with higher dissipation rate of kinetic energy per unit mass of fluid, smaller dissipation rate of mean-squared temperature and lower temperature-salinity contribution ratio comes the better detection probability. Meanwhile, a HyGG vortex beam with smaller topological charge and longer wavelength has a superior turbulent resistance property. It provides a promising way to estimate the propagation characteristics of the optical beams in an underwater environment.

中文翻译:

理论推导与数值模拟研究海洋湍流下超几何-高斯涡旋光束的传播

在本文中,我们使用两种方法研究超湍流-高斯(HyGG)涡旋光束在海洋湍流下的传播特性。一种是基于Rytov逼近理论的数值计算,其中推导了通过海洋湍流传播的HyGG涡旋光束的理论检测概率方程。另一种是基于海洋湍流随机相位屏蔽模型的数值模拟,其中海洋湍流对传播光束的相位和强度以及光束通过多个独立相位屏蔽的传播的影响保持在相同的距离,具有相同的效果。讨论了海洋湍流参数和初始波束参数对接收器处的HyGG涡流波束检测概率的影响。理论推导的结果与数值模拟结果吻合良好,表明数值模拟方法可以有效地模拟复杂的理论推导。两种结果都表明,每单位质量流体的动能耗散率越高,均方温度的耗散率越小,温度-盐度的贡献率越低,检测概率就越高。同时,具有较小拓扑电荷和较长波长的HyGG涡旋光束具有优异的抗湍流性能。它为估算水下环境中光束的传播特性提供了一种有前途的方法。这表明数值模拟方法可以有效地模拟复杂的理论推导。两种结果都表明,每单位质量流体的动能耗散率越高,均方温度的耗散率越小,温度-盐度的贡献率越低,检出率就越高。同时,具有较小拓扑电荷和较长波长的HyGG涡旋光束具有优异的抗湍流性能。它为估算水下环境中光束的传播特性提供了一种有前途的方法。这表明数值模拟方法可以有效地模拟复杂的理论推导。两种结果都表明,每单位质量流体的动能耗散率越高,均方温度的耗散率越小,温度-盐度的贡献率越低,检测概率就越高。同时,具有较小拓扑电荷和较长波长的HyGG涡旋光束具有优异的抗湍流性能。它为估算水下环境中光束的传播特性提供了一种有前途的方法。均方温度的耗散率越小,温度-盐度的贡献率越低,则检测概率越高。同时,具有较小拓扑电荷和较长波长的HyGG涡旋光束具有优异的抗湍流性能。它为估算水下环境中光束的传播特性提供了一种有前途的方法。均方温度的耗散率越小,温度-盐度的贡献率越低,则检测概率越高。同时,具有较小拓扑电荷和较长波长的HyGG涡旋光束具有优异的抗湍流性能。它为估算水下环境中光束的传播特性提供了一种有前途的方法。
更新日期:2021-04-19
down
wechat
bug