当前位置: X-MOL 学术Ecology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The allometry of locomotion
Ecology ( IF 4.4 ) Pub Date : 2021-04-16 , DOI: 10.1002/ecy.3369
Carl S Cloyed 1, 2, 3 , John M Grady 1 , Van M Savage 4 , Josef C Uyeda 5 , Anthony I Dell 1, 2
Affiliation  

Organismal locomotion mediates ecological interactions and shapes community dynamics. Locomotion is constrained by intrinsic and environmental factors and integrating these factors should clarify how locomotion affects ecology across scales. We extended general theory based on metabolic scaling and biomechanics to predict the scaling of five locomotor performance traits: routine speed, maximum speed, maximum acceleration, minimum powered turn radius, and angular speed. To test these predictions, we used phylogenetically informed analyses of a new database with 884 species and found support for our quantitative predictions. Larger organisms were faster but less maneuverable than smaller organisms. Routine and maximum speeds scaled with body mass to 0.20 and 0.17 powers, respectively, and plateaued at higher body masses, especially for maximum speed. Acceleration was unaffected by body mass. Minimum turn radius scaled to a 0.19 power, and the 95% CI included our theoretical prediction, as we predicted. Maximum angular speed scaled higher than predicted but in the same direction. We observed universal scaling among locomotor modes for routine and maximum speeds but the intercepts varied; flying organisms were faster than those that swam or ran. Acceleration was independent of size in flying and aquatic taxa but decreased with body mass in land animals, possibly due to the risk of injury large, terrestrial organisms face at high speeds and accelerations. Terrestrial mammals inhabiting structurally simple habitats tended to be faster than those in complex habitats. Despite effects of body size, locomotor mode, and habitat complexity, universal scaling of locomotory performance reveals the general ways organisms move across Earth’s complex environments.

中文翻译:

运动的异速生长

有机体运动调节生态相互作用并塑造社区动态。运动受到内在和环境因素的约束,整合这些因素应该可以阐明运动如何跨尺度影响生态。我们扩展了基于代谢标度和生物力学的一般理论来预测五个运动性能特征的标度:常规速度、最大速度、最大加速度、最小动力转弯半径和角速度。为了测试这些预测,我们对一个包含 884 个物种的新数据库进行了系统发育知情分析,并找到了对我们定量预测的支持。与较小的生物相比,较大的生物速度更快,但机动性较差。常规速度和最大速度分别随体重增加 0.20 和 0.17 次方,并在体重较高时趋于稳定,尤其是对于最大速度。加速度不受体重的影响。最小转弯半径缩放为 0.19 次幂,并且 95% CI 包括我们的理论预测,正如我们预测的那样。最大角速度比预测的更高,但方向相同。我们观察到常规和最大速度的运动模式之间的普遍缩放,但截距不同;飞行的生物比游泳或奔跑的生物快。加速度与飞行和水生类群的大小无关,但随着陆地动物的体重而下降,这可能是由于大型陆地生物在高速和加​​速时面临受伤的风险。栖息在结构简单的栖息地的陆生哺乳动物往往比生活在复杂栖息地的陆生哺乳动物行动得更快。尽管受到体型、运动模式和栖息地复杂性的影响,
更新日期:2021-04-16
down
wechat
bug