当前位置: X-MOL 学术J. Geophys. Res. Solid Earth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regional Subsidence Analysis Through a Multi‐Scale Modeling Framework Based on Breakage Mechanics
Journal of Geophysical Research: Solid Earth ( IF 3.9 ) Pub Date : 2021-04-15 , DOI: 10.1029/2020jb021335
Yanni Chen 1 , José Lizárraga 2 , Giuseppe Buscarnera 1
Affiliation  

Although poroelastic models are often used to explain the delay between subsurface fluid depletion and ground subsidence, inelastic compaction involving permanent changes of rock microstructure may exacerbate hydro‐mechanical coupling, thus influencing the interpretation of measurements and long‐term forecasts. Here, a multi‐scale modeling approach is discussed, which accounts for the inherent connection between rock microstructure, hydraulic conductivity, and pore compaction. A constitutive model built within the framework of breakage mechanics is proposed to link the hydraulic conductivity of granular rocks with inelastic deformations and changes in grading caused by injection‐depletion cycles at stress levels far from yielding. The proposed model has been incorporated into large‐scale simulation frameworks, thus enabling the spatiotemporal mapping of regional subsidence through a hybrid, semi‐analytical approach. Numerical results based on this strategy show that the model allows isolating near‐field and far‐field effects into the computation of land subsidence and can generate forecasts for different modeling scenarios (e.g., elastic and inelastic compaction, constant permeability, and concurrent change of compressibility and permeability). In particular, examples of simulations for the case of the Groningen gas field are discussed, showing the model capabilities to use both field measurements and laboratory tests for the generation of reasonable subsidence maps, without expensive computational costs. Results indicate that ignoring coupled inelastic effects has major consequences on the predicted timescale of subsidence. Specifically, while all the model scenarios produced similar long‐term ground settlements, those ignoring breakage‐dependent permeability changes result in a variation of the temporal window of residual subsidence of the order of several decades.

中文翻译:

基于破坏力学的多尺度建模框架下的区域沉降分析

尽管通常使用孔隙弹性模型来解释地下流体耗竭与地面沉降之间的延迟,但是涉及岩石微观结构永久变化的非弹性压实可能会加剧水力耦合,从而影响测量和长期预报的解释。在此,我们讨论了一种多尺度建模方法,该方法考虑了岩石微观结构,导水率和孔隙压实之间的内在联系。提出了一个在断裂力学框架内建立的本构模型,将粒状岩石的水力传导率与非弹性变形和注入-损耗循环在远离屈服的应力水平下引起的坡度变化联系起来。拟议的模型已被纳入大型仿真框架,因此,可以通过混合,半分析方法对区域沉降进行时空映射。基于此策略的数值结果表明,该模型可以将近场和远场影响隔离到地面沉降的计算中,并且可以针对不同的建模场景(例如弹性和非弹性压实,恒定渗透率以及可压缩性的同时变化)生成预测和渗透性)。特别是,讨论了格罗宁根(Groningen)气田情况的模拟示例,显示了使用场测量和实验室测试来生成合理的沉降图的模型功能,而无需花费昂贵的计算成本。结果表明,忽略耦合的非弹性效应对沉降的预计时间尺度具有重大影响。具体来说,
更新日期:2021-05-03
down
wechat
bug