当前位置: X-MOL 学术Sci. Technol. Nuclear Install. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methodology for Establishing Segmentation Strategy for Large Metal Components from Nuclear Power Plants with Consideration of Packaging into Containers
Science and Technology of Nuclear Installations ( IF 1.0 ) Pub Date : 2021-04-16 , DOI: 10.1155/2021/8814536
Jae Min Lee 1 , Jae Hak Cheong 1 , Jooho Whang 1
Affiliation  

A methodology for segmenting large metal components from nuclear power plants has been developed with a view to minimizing the number of containers to emplace segmented pieces. Spherocylinder-type and rectangular prism-type objects are modeled in shapes, and equations to calculate heights, widths, lengths, or angles for segmentation and the number of pieces are derived using geometric theorems, with a hypothetical ‘virtual rectangle’ being introduced for simplification. Applicability of the new methodology is verified through case studies assuming that each segmented piece is packaged into a 200 L container, and a procedure for adjusting potential overestimation of the segmented pieces due to the virtual rectangle is proposed. The new approach results in fewer segmented pieces but more containers than an existing segmentation study using 3D modeling. It is demonstrated that the number of containers can be further reduced, however, if the generalized methodology is followed by 3D modeling. In addition, it is confirmed that the generalized approach is also applicable to a nonstandard shapes such as ellipsoidal shape but only under limited conditions. Sensitivity analyses are conducted by changing dimensions of the objects and container, which brings about an optimal dimension of container as well. The generalized approach would be utilized either alone in decommissioning planning to estimate waste from segmentation of large metal components or combined with 3D modeling to optimize segmentation operation.

中文翻译:

考虑包装到容器中的核电厂大型金属零件细分策略建立方法

为了最小化用于放置分段件的容器的数量,已经开发了一种用于分段分离核电站中的大型金属部件的方法。球形圆柱体和矩形棱柱体对象在形状上建模,并使用几何定理推导了用于计算高度,宽度,长度或角度以进行分段和件数的方程式,并引入了一个假设的“虚拟矩形”以简化操作。通过将每个分段的零件包装到200 L的容器中的案例研究,验证了新方法的适用性,并提出了一种程序来调整由于虚拟矩形而导致的分段的潜在高估。与使用3D建模的现有细分研究相比,新方法可减少分割的片段,但增加容器的数量。事实证明,如果在3D建模之后采用通用方法,则可以进一步减少容器的数量。另外,已经证实,一般化方法也适用于非标准形状,例如椭圆形,但是仅在有限的条件下适用。灵敏度分析是通过更改对象和容器的尺寸来进行的,这也带来了容器的最佳尺寸。通用方法既可以在退役计划中单独使用,以估计大型金属零件分割产生的浪费,也可以与3D建模相结合来优化分割操作。事实证明,如果在3D建模之后采用通用方法,则可以进一步减少容器的数量。另外,已经证实,一般化方法也适用于非标准形状,例如椭圆形,但是仅在有限的条件下适用。灵敏度分析是通过更改对象和容器的尺寸来进行的,这也带来了容器的最佳尺寸。通用方法既可以在退役计划中单独使用,以估计大型金属零件分割产生的浪费,也可以与3D建模相结合来优化分割操作。事实证明,如果在3D建模之后采用通用方法,则可以进一步减少容器的数量。另外,已经证实,一般化方法也适用于非标准形状,例如椭圆形,但是仅在有限的条件下适用。灵敏度分析是通过更改对象和容器的尺寸来进行的,这也带来了容器的最佳尺寸。通用方法既可以在退役计划中单独使用,以估计大型金属零件分割产生的浪费,也可以与3D建模相结合来优化分割操作。可以肯定的是,该通用方法也适用于非标准形状,例如椭圆形,但仅在有限的条件下适用。灵敏度分析是通过更改对象和容器的尺寸来进行的,这也带来了容器的最佳尺寸。通用方法既可以在退役计划中单独使用,以估计大型金属零件分割产生的浪费,也可以与3D建模相结合来优化分割操作。可以肯定的是,该通用方法也适用于非标准形状,例如椭圆形,但仅在有限的条件下适用。灵敏度分析是通过更改对象和容器的尺寸来进行的,这也带来了容器的最佳尺寸。通用方法既可以在退役计划中单独使用,以估计大型金属零件分割产生的浪费,也可以与3D建模相结合来优化分割操作。
更新日期:2021-04-16
down
wechat
bug