当前位置: X-MOL 学术Integr. Mater. Manuf. Innov. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integrated Computational Design of Three-Phase Mo–Si–B Alloy Turbine Blade for High-Temperature Aerospace Applications
Integrating Materials and Manufacturing Innovation ( IF 2.4 ) Pub Date : 2021-04-16 , DOI: 10.1007/s40192-021-00207-6
Brett D. Ellis , Hasan Haider , Matthew W. Priddy , Anirban Patra

The efficiencies of jet turbine engines are limited in part by the high-temperature properties of Ni-based superalloys utilized within turbine blades. Although Mo–Si–B alloys exhibit promising high-temperature properties, traditional materials development approaches relying extensively upon costly trial-and-error experiments inhibit the adoption rate of new materials. The present research seeks to address this problem by developing and demonstrating a computational materials design framework for the design of Mo-Si-B alloys for gas turbine blade applications. The developed framework utilizes: (1) finite element simulations of 280 random microstructure instantiations to predict microstructure- and temperature-dependent yield strength and fracture toughness and their uncertainties; (2) analytical models to predict stresses due to turbine blade rotation; and (3) the inductive design exploration method (IDEM) to determine robust feasible domains of input and intermediate design variables. IDEM considers three input design variables (i.e., operating temperatures of 1273 K and 1473 K, volume fraction of the Molybdenum solid solution phase 0.45 ≤ vMoSS ≤ 0.75, and volume fraction of T2 intermetallic phase 0.125 ≤ vT2 ≤ 0.275) and three intermediate design variables (i.e., yield strength, fracture toughness, and density). Results indicate a maximum feasible temperature of approximately 1295 K at vMoSS and vT2 of approximately 0.45 and 0.18, respectively. This work is significant in that it demonstrates the design of Mo-Si-B alloys for high-temperature blades for aerospace applications, thus providing a means to increase efficiencies and reduce greenhouse gas emissions.



中文翻译:

高温航空航天应用的三相Mo-Si-B合金涡轮叶片的集成计算设计

喷气涡轮发动机的效率部分受到涡轮叶片内使用的Ni基高温合金的高温性能的限制。尽管Mo–Si–B合金具有良好的高温性能,但是传统的材料开发方法广泛依赖于昂贵的反复试验,这阻碍了新材料的采用率。本研究旨在通过开发和演示用于燃气轮机叶片应用的Mo-Si-B合金设计的计算材料设计框架来解决此问题。所开发的框架利用:(1)280个随机微结构实例的有限元模拟,以预测微结构和温度相关的屈服强度和断裂韧性及其不确定性;(2)预测模型,以预测由于涡轮叶片旋转而产生的应力;(3)归纳设计探索方法(IDEM)来确定输入变量和中间设计变量的鲁棒可行域。IDEM考虑了三个输入设计变量(,操作1273 K和1473 K,钼固溶相0.45≤的体积分数的温度 v ≤0.75,T2间相0.125≤的体积分数 v T2  ≤0.275)和三个中间设计变量(,屈服强度,断裂韧性和密度)。结果表明,在v MoSSv T2分别为约0.45和0.18时,最大可行温度约为1295K。这项工作意义重大,因为它演示了用于航空航天应用的高温叶片的Mo-Si-B合金的设计,从而为提高效率和减少温室气体排放提供了一种手段。

更新日期:2021-04-16
down
wechat
bug