当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High sulfur solubility in subducted sediment melt under both reduced and oxidized conditions: with implications for S recycling in subduction zone settings
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2021-04-16 , DOI: 10.1016/j.gca.2021.04.001
Huijuan Li , Lifei Zhang , Xinjian Bao , Jeremy L. Wykes , Xi Liu

The relative enrichment of sulfur (S) observed in arc magmas when compared to MORB, reflects the addition of slab-derived S to the mantle wedge source region. However, the mechanisms and efficiency of such S recycling remain poorly constrained. In this study, sediment melting experiments have been conducted using a synthetic pelite starting composition containing ∼7 wt% H2O and ∼1.9 wt% S, at 3 GPa, 1050°C and variable oxygen fugacity (fO2), to investigate the effect of fO2 on S solubility in sediment melts. To assess temperature and concentration effects, selected experiments were repeated either at lower temperatures of 950°C and 1000°C, or with a higher bulk S content of ∼4 wt%. All experiments produced hydrous rhyolitic melts, saturated with either pyrrhotite under reduced conditions or anhydrite under oxidized conditions. For 3 GPa, 1050°C experiments, the sulfur content at sulfide saturation (SCSS) in melt is found to increase with decreasing fO2, from ∼200 ppm at FMQ-0.5 to ∼1900 ppm at FMQ-7.5. The highest S solubility is achieved at FMQ+1.6 where melt is saturated with both anhydrite and pyrrhotite. The sulfur content at sulfate saturation (SCAS) decreases from ∼2600 ppm at FMQ+1.6 to ∼2000 ppm at FMQ+7. Increasing either bulk S content or temperature produces a positive effect on SCSS and SCAS. Raman spectra of our experimental melts show that S exists as H2S/HS- under reduced conditions and as SO42- under oxidized conditions. The solubility minimum, i.e., the onset of transition from S2- to S6+ is estimated to occur at ∼FMQ, with full transition to S6+ by ∼FMQ+2. While the SCAS values are in good agreement with previous reports, the distinct increase of SCSS with decreasing fO2 (when fO2<FMQ) has not been observed in previous slab melting experiments. Furthermore, we report for the first time that dissolution of H2S and SO2 in hydrous rhyolitic melt follows the Fincham-Richardson relationship; and propose the definition of a hydro-sulfide capacity as CHS = [HS]*(fO2/fS2)1/2; where [HS] is the concentration of S in melt (in ppm) dissolved as HS- and H2S. SCSS for H2S dissolution can therefore be modeled using CHS in an analogous fashion to modeling SCSS for anhydrous melts using the sulfide capacity (CS2-), with the relation ln[HS]SCSS=-ΔGFes - FeO°/RT+lnCHS-lnaFeOmelt+lnaFeSsulfide. As predicted by such a model framework, we indeed observe a linear correlation between logSCSS and logXFeO (the mole fraction of FeO in melt) with a slope close to -1, i.e., SCSS experiences a sharp increase when FeO in melt falls below 1 wt%. Therefore, both our experimental results and model predictions suggest hydrous low-Fe rhyolitic melt produced by sediment melting under reduced conditions has the required S solubility to account for the relative enrichment of S observed in arc magmas.



中文翻译:

在还原和氧化条件下,俯冲沉积物熔体中的高硫溶解度:对俯冲带环境中的S循环产生影响

与MORB相比,在弧岩浆中观察到的硫(S)的相对富集反映了板坯衍生的S添加到地幔楔源区。但是,这种硫回收的机理和效率仍然受到限制。在这项研究中,沉积物熔化实验已经使用合成泥质起始含~7重量%H组合物已进行2 O和〜1.9%(重量)S,在为3GPa,1050℃和可变氧逸度(˚F Ò 2调查的效果˚F Ò 2S在沉积物熔体中的溶解度。为了评估温度和浓度的影响,在较低的950°C和1000°C的温度下,或在〜4 wt%的较高体积S含量下重复了选定的实验。所有实验均产生含水流变质熔体,在还原条件下用黄铁矿或在氧化条件下用无水铁矿饱和。对于1050°C,3 GPa的实验,发现熔体中硫化物饱和(SCSS)时的硫含量随着f O 2的降低而增加从FMQ-0.5时约200 ppm到FMQ-7.5时约1900 ppm。最高的S溶解度在FMQ + 1.6时达到,熔体同时被硬石膏和黄铁矿饱和。硫酸盐饱和度(SCAS)下的硫含量从FMQ + 1.6时的〜2600 ppm降至FMQ + 7时的〜2000 ppm。增加大量S含量或温度都会对SCSS和SCAS产生积极影响。我们的实验熔体的拉曼光谱显示该S存在以H 2 S / HS -还原条件下和作为SO 4 2-氧化条件下进行。溶解度最小值,即从S 2-过渡到S 6+的开始时间估计在〜FMQ发生,并完全过渡到S 6+〜FMQ + 2。虽然SCAS值与以前的报告非常吻合,但在以前的板坯熔化实验中,未观察到SCSS随着f O 2的降低而明显增加(当f O 2 <FMQ时)。此外,我们首次报道了H 2 S和SO 2在含水流纹岩熔体中的溶解遵循Fincham-Richardson关系。并提出了硫化氢容量的定义为C HS = [HS] *(f O 2 / f S 21/2;其中[HS]是溶解为HS的熔体中S的浓度(以ppm为单位)-和H 2 S. SCSS用于h 2小号溶解,因此可以使用建模Ç HS以类似的方式来建模使用硫化物容量(无水熔体SCSS Ç小号2-),与所述关系ln[HS]SCSS=--ΔGFes-FeO°/[RŤ+lnCHS--ln一种氧化铁熔化+ln一种硫化铁硫化物。正如该模型框架所预测的,我们确实观察到logSCSS与log X FeO(熔体中FeO的摩尔分数)之间的线性相关,其斜率接近-1,即,当熔体中FeO降至以下时,SCSS急剧增加。 1重量%。因此,我们的实验结果和模型预测均表明,在还原条件下通过沉积物熔融产生的含水低铁流纹熔体具有所需的S溶解度,以解决弧岩浆中S的相对富集问题。

更新日期:2021-04-16
down
wechat
bug